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Foreword

If you mention the word embedded to most peopkey'hassume you're talking about reporters in a wa
zone. Few dictionaries—including the canonical @afanglish Dictionary—Ilink embedded to
computer systems. Yet embedded systems underlily radleof the electronic devices used today, from
cell phones to garage door openers to medicalimgnts. By now, it's nearly impossible to build
anything electronic without adding at least a smmatlroprocessor and associated software.

Vendors produce some nine billion microprocessoesyeyear. Perhaps 100 or 150 million of those go
into PCs. That's only about one percent of theswstitpped. The other 99 percent go into embedded
systems; clearly, this stealth business represieatgery fabric of our highly technological society

And use of these technologies will only increas#uttons to looming environmental problems will

surely rest on the smarter use of resources enallechbedded systems. One only has to look at the
network of 32-bit processors in Toyota's hybriduBrio get a glimpse of the future.
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Though prognostications are difficult, it is abdely clear that consumers will continue to demavet-e
brainier products requiring more microprocessois famge increases in the corresponding software.
Estimates suggest that the firmware content of maxtucts doubles every 10 to 24 months. While the
demand for more code is increasing, our produgtidtes creep up only slowly. So it's also cleat th
the industry will need more embedded systems peomleder to meet the demand.

What skills will these people need? In the PC waslte must be a competent C/C++ programmer. But
embedded developers must have a deep understasfdinth the programming languages and the
hardware itself; no one can design, code, andatestterrupt service routine, for instance, without
knowing where the interrupts come from, how thedhare prioritizes them, the tricks behind servicing
that hardware, and machine-level details abounhgaand preserving the system's context. A firmware
developer must have detailed insight into the hardvimplementation of his system's peripherals
before he can write a single line of driver code.

In the PC world, the magic of the hardware is hiddehind an extensive API. In an embedded system,
that API is always written by the engineers that@eveloping the product.

In this book, Michael Barr and Anthony Massa shawlthe software and hardware form a synergistic
gestalt. They don't shy away from the intricaciemterrupts and 1/O, or priority inversion and rexes.

The authors appropriately demonstrate building eldbd systems using a variety of open source tools,
including the GNU compiler suite, which is a stamli@mol widely used in this industry. eCos and nu
both free/open source products, are used to dematasimall and large operating systems.

The original version of this book used an x86 talgerd, which has been replaced in this editioary
ARM-based product. Coincidently, as this volume wagroduction, Intel made an end-of-life
announcement for all of its embedded x86 proces&waders can be assured that the ARM will be
around for a very long time, as it's supported lgaormous infrastructure of vendors.

The hardware is inexpensive and easily availahkesbftware is free. Together they represent the
mainstream of embedded systems development. Rezatetse sure they'll use these tools in the future.

Buy the development kit, read the book, and exettigexamples. You'll get the hands-on experience
that employers demand: building and working wital embedded applications.

Preface

First figure out why you want the students to leidwa subject and what you want them to know, aed th
method will result more or less by common sense.

Richard Feynman
Embedded software is in almost every electroniéadem use today. There is software hidden away

inside our watches, DVD players, mobile phones|aukt brakes, and even a few toasters. The military
uses embedded software to guide missiles, deteabynircraft, and pilot UAVs. Communication
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satellites, deep-space probes, and many medi¢almnsnts would've been nearly impossible to create
without it.

Someone has to write all that software, and thexeems of thousands of electrical engineers, coenpu
scientists, and other professionals who actuallWde are two of them, and we know from our personal
experiences just how hard it can be to learn th#.cr

Each embedded system is unique, and the hardwhighiy specialized to the application domain. As a
result, embedded systems programming can be aywedeying experience and can take years to
master. However, one common denominator acrosssalaicembedded software development is the
use of the C programming language. This book wdkth you how to use C in any embedded system.

Even if you already know how to write embeddedwaft, you can still learn a lot from this book. In
addition to learning how to use C more effectivgigy'll also benefit from the detailed explanatiansl
source code associated with common embedded seffwablems. Among the advanced topics covered
in the book are memory testing and verificationjice driver design and implementation, real-time
operating system internals, and code optimizaggohrniques.

Why We Wrote This Book

Each year, globally, approximately one new processmanufactured per person. That's more than six
billion new processors each year, fewer than twogre of which are the Pentiums and PowerPCs at the
heart of new personal computers. You may wondethenghere are really that many computers
surrounding us. But we bet that within five minuyesi can probably spot dozens of products in your
own home that contain processors: televisionsesiMP3 players, coffee makers, alarm clocks,
VCRs, DVD players, microwaves, dishwashers, rernoterols, bread machines, digital watches, and

so on. And those are just the personal possessim@syy-more such devices are used at work. The fact
that every one of those products contains not argyocessor, but also software, is the impetughier

book.

One of the hardest things about this subject isvkmg when to stop writing. Each embedded system is
unique, and we have therefore learned that theae exception to every rule. Nevertheless, we have
tried to bolil the subject down to its essence amrdgnt the things that programmers definitely rieed
know about embedded systems.

Intended Audience

This is a book about programming embedded syster@s As such, it assumes that the reader already
has some programming experience and is at leadtdamith the syntax of the C language. It also
helps if you have some familiarity with basic datauctures, such as linked lists. The book does not
assume that you have a great deal of knowledget @boputer hardware, but it does expect that you
are willing to learn a little bit about hardwaremd the way. This is, after all, a part of the gdlan
embedded programmer.

While writing this book, we had two types of reaglgr mind. The first reader is a beginner—much as
we were once. He has a background in computersEi@nengineering and a few years of programming
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experience. The beginner is interested in writimipedded software for a living but is not sure Justv
to get started. After reading the first severalptbes, he will be able to put his programming skid
work developing simple embedded programs. Theofeste book will act as a reference for the more
advanced topics encountered in the coming monttiyears of his career.

The second reader is already an embedded systegrapmmer. She is familiar with embedded
hardware and knows how to write software for it isuboking for a reference book that explains key
topics. Perhaps the embedded systems programmexpasence only with assembly language
programming and is relatively new to C. In thategabe book will teach her how to use the C languag
effectively in an embedded system, and the lateptehs will provide advanced material on real-time
operating systems, peripherals, and code optirizati

Whether you fall into one of these categories dr we hope this book provides the information yoa a
looking for in a format that is friendly and easdgcessible.

Organization

The book contains 14 chapters and 5 appendixescidgers can be divided quite nicely into two
parts. The first part consists of Chapters 1 thhobignd is intended mainly for newcomers to embeédde
systems. These chapters should be read in tha@ietyrdnd in the order that they appear. This lailhg
you up to speed quickly and introduce you to th&dseof embedded software development. After
completingChapter 5you will be ready to develop small pieces of eddssl software on your own.

The second part of the book consists of Chapténsobigh 14 and discusses advanced topics thaf are o
interest to inexperienced and experienced embegidepiammers alike. These chapters are mostly self-
contained and can be read in any order. In addi@m@pters 6 through 12 contain example programs
that might be useful to you on a future embeddéiivaoe project.

Chapter 1, Introduction

Explains the field of embedded programming and taysthe parameters of the book, including
the reference hardware used for examples

Chapter 2, Getting to Know the Hardware

Shows how to explore the documentation for youdware and represent the components you
need to interact with in C

Chapter 3, Your First Embedded Program
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Creates a simple blinking light application thaistrates basic principles of embedded
programming

Chapter 4, Compiling, Linking, and Locating

Goes over the ways that embedded systems differ éanventional computer systems during
program building steps, covering such issues assetompilers

Chapter 5, Downloading and Debugging

Introduces the tools you'll need in order to irar problems in both hardware and software

Chapter 6, Memory

Describes the different types of memory that dgvels choose for embedded systems and the
issues involved in using each type

Chapter 7, Peripherals

Introduces the notion of a device driver, alongwather coding techniques for working with
devices

Chapter 8, Interrupts

Covers this central area of working with periphgral

Chapter 9, Putting It All Together

Combines the concepts and code from the previcagtehwith convenience functions and a
main program, to create a loadable, testable agifgic

Chapter 10, Operating Systems
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Introduces common operating system concepts, imgjudsks (or threads) and synchronization
mechanisms, along with the reasons for addingldirea operating system

Chapter 11, eCos Examples

Shows how to use some features of the eCos realdparating system

Chapter 12, Embedded Linux Examples

Accomplishes the same task as the previous chdqtefor the embedded Linux operating
system

Chapter 13, Extending Functionality

Describes options for adding buses, networking,ahdr communication features to a system

Chapter 14, Optimization Techniques

Describes ways to decrease code size, reduce mers@rgand conserve power

Appendix A, The Arcom VIPER-Lite Development Kit

Describes the board used for the examples in ok hnd how to order one for yourself

Appendix B, Setting Up Your Software DevelopmentiEmnment

Gives instructions for loading the software dessdiim this book on your host Windows or
Linux computer

Appendix C, Building the GNU Software Tools

Shows you how to compile the GNU development tools
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Appendix D, Setting Up the eCos Development Envitent

Shows you how to build an eCos library appropriateyour embedded system so you can
compile programs to run on your system

Appendix E, Setting Up the Embedded Linux Developnienvironment

Describes how to install the embedded Linux tooisybur Arcom system and build and run a
program on it

Throughout the book, we have tried to strike ahaabetween specific examples and general
information. Whenever possible, we have eliminatédor details in the hope of making the book more
readable. You will gain the most from the bookoluwview the examples, as we do, primarily as tools
for understanding important concepts. Try not tolgeged down in the details of any one circuitrdoa

or chip. If you understand the general C prograngncioncepts, you should be able to apply them to any
embedded system you encounter.

To focus the book's example code on specific cascee intentionally left it incomplete—for

example, by eliminating certain include files ardundant variable declarations. For complete detail
about the code, refer to the full example souraean the book's web site.

Conventions, Typographical and Otherwise

The following typographical conventions are usaodulghout the book:

Italic

Indicates names of files, programs, methods, atidrigowhen they appear in the body of a
paragraph. Italic is also used for emphasis amattoduce new terms.

Constant Width

In examples, indicates the contents of files ardatiitput of commands. In regular text, this style
indicates keywords, functions, variable names seasobjects, parameters, and other code
snippets.

Constant Width Bold
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Indicates commands and options to be typed literahis style is used in examples only.

Constant Wdth Bold Italic

Indicates text to be replaced with user valuesek@mple, a flename on your system. This style
is used in examples only.

This symbol is used to indicate a tip, suggestwrgeneral note.

This symbol is used to indicate a warning.

Other conventions relate to gender and roles. Yégpect to gender, we have purposefully used both
"he" and "she" throughout the book. With respeabtes, we have occasionally distinguished between
the tasks of hardware engineers, embedded sofengiieeers, and application programmers. But these
titles refer only to roles played by individual @mgers, and it should be noted that it can anchaftees
happen that a single individual fills more than ofhéhese roles on an embedded-project team.

Obtaining the Examples Online

This book includes many source code listing, ahtwlthe most trivial snippets are available oalin
These examples are organized by chapter numbeneide build instructions (makefiles) to help you
recreate each of the executables. The completévarnshavailable at
http://examples.oreilly.com/embsys?2

Using Code Examples

This book is here to help you get your job donegéneral, you may use the code in this book in your
programs and documentation. You do not need tcacbns for permission unless you're reproducing a
significant portion of the code. For example, vagtia program that uses several chunks of code from
this book does not require permission. Sellingistrithuting a CD-ROM of examples from O'Reilly
books does require permission. Answering a questyoeiting this book and quoting example code does
not require permission. Incorporating a significamtount of example code from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution.admibution usually includes the title, author, psiber,
and ISBN. For example: "Programming Embedded Systeitih C and GNU Development Tools,
Second Edition, by Michael Barr and Anthony Ma$3apyright 2007 O'Reilly Media, Inc., 978-0-596-
00983-0."
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If you feel your use of code examples falls outsaleuse or the permission given above, feel feee
contact us at permissions@oreilly.com.

Chapter 1. Introduction

| think there is a world market for maybe five carneps.
—Thomas Watson, Chairman of IBM, 1943

There is no reason anyone would want a computtrdim home.
—Ken Olson, President of Digital Equipment Corpianat 1977

One of the more surprising developments of thefeagtdecades has been the ascendance of computers
to a position of prevalence in human affairs. Tottere are more computers in our homes and offices
than there are people who live and work in thent.rifa@ny of these computers are not recognized as
such by their users. In this chapter, we'll explairat embedded systems are and where they are.found
We will also introduce the subject of embedded paogning and discuss what makes it a unique form
of software programming. We'll explain why we haedected C as the language for this book and
describe the hardware used in the examples.

1.1. What Is an Embedded System?

An embedded system is a combination of computeiviere and software—and perhaps additional
parts, either mechanical or electronic—designgoketéorm a dedicated function. A good example is the
microwave oven. Almost every household has one temsl of millions of them are used every day, but
very few people realize that a computer processdrsaftware are involved in the preparation ofrthei
lunch or dinner.

The design of an embedded system to perform aaedidunction is in direct contrast to that of the
personal computer. It too is comprised of comphtgdware and software and mechanical components
(disk drives, for example). However, a personal potar is not designed to perform a specific functio
Rather, it is able to do many different things. Maeople use the term general-purpose computer to
make this distinction clear. As shipped, a genpteipose computer is a blank slate; the manufacturer
does not know what the customer will do with it.€3nustomer may use it for a network file server,
another may use it exclusively for playing gamesl a third may use it to write the next great Arceni
novel.

Frequently, an embedded system is a componentwathine larger system. For example, modern cars
and trucks contain many embedded systems. One e@tbagstem controls the antilock brakes, another
monitors and controls the vehicle's emissions,atidrd displays information on the dashboard. Some
luxury car manufacturers have even touted the nuwibygrocessors (often more than 60, including one
in each headlight) in advertisements. In most caasgemotive embedded systems are connected by a
communications network.
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It is important to point out that a general-purposmputer interfaces to numerous embedded systems.
For example, a typical computer has a keyboardhamase, each of which is an embedded system.
These peripherals each contain a processor antlagefand is designed to perform a specific function
Another example is a modem, which is designed hd s&d receive digital data over an analog
telephone line; that's all it does. And the spediiinction of other peripherals can each be sunzedri

in a single sentence as well.

The existence of the processor and software imdgedded system may be unnoticed by a user of the
device. Such is the case for a microwave oven, pI&ger, or alarm clock. In some cases, it wouldneve
be possible to build a functionally equivalent @evihat does not contain the processor and software
This could be done by replacing the processor-sgstweombination with a custom integrated circuit
(IC) that performs the same functions in hardwhlewvever, the processor and software combination
typically offers more flexibility than a hardwiretesign. It is generally much easier, cheaper, essl |
power intensive to use a processor and softwaae mbedded system.

1.1.1. History and Future

Given the definition of embedded systems presesaeler in this chapter, the first such systemddou
not possibly have appeared before 1971. That weagdar Intel introduced the world's first singlepch
microprocessor. This chip, the 4004, was desigoedde in a line of business calculators produged b
the Japanese company Busicom. In 1969, Busiconudstel to design a set of custom integrated
circuits, one for each of its new calculator mod&lse 4004 was Intel's response. Rather than design
custom hardware for each calculator, Intel prop@gdneral-purpose circuit that could be used
throughout the entire line of calculators. Thise@fpurpose processor was designed to read and
execute a set of instructions—software—stored iexdarnal memory chip. Intel's idea was that the
software would give each calculator its uniquedsddéatures and that this design style would drive
demand for its core business in memory chips.

The microprocessor was an overnight success, sngét increased steadily over the next decadey Earl
embedded applications included unmanned space Qrobeputerized traffic lights, and aircraft flight
control systems. In the 1980s and 1990s, embeddteinss quietly rode the waves of the
microcomputer age and brought microprocessorsewméoy part of our personal and professional lives.
Most of the electronic devices in our kitchens @orenachines, food processors, and microwave ovens),
living rooms (televisions, stereos, and remote i), and workplaces (fax machines, pagers, laser
printers, cash registers, and credit card readeesgmbedded systems; over 6 billion new
microprocessors are used each year. Less tharc@npéor about 100 million per year) of these
microprocessors are used in general-purpose conspute

It seems inevitable that the number of embeddeygswill continue to increase rapidly. Alreadyrthe
are promising new embedded devices that have engrmarket potential: light switches and
thermostats that are networked together and caotiteolled wirelessly by a central computer,
intelligent air-bag systems that don't inflate wieliidren or small adults are present, medical
monitoring devices that can notify a doctor if diguat's physiological conditions are at criticaléés,

and dashboard navigation systems that inform ydheobest route to your destination under current
traffic conditions. Clearly, individuals who possébke skills and the desire to design the next rgeioa
of embedded systems will be in demand for quiteesbme.
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1.1.2. Real-Time Systems

One subclass of embedded systems deserves aruictioydat this point. A real-time system has timing
constraints. The function of a real-time systerthiss partly specified in terms of its ability to kea
certain calculations or decisions in a timely manf@ese important calculations or activities have
deadlines for completion.

The crucial distinction among real-time systems irewhat happens if a deadline is missed. For
example, if the real-time system is part of anlamp's flight control system, the lives of the geaggers
and crew may be endangered by a single missedideadbwever, if instead the system is involved in
satellite communication, the damage could be lidhitea single corrupt data packet (which may or may
not have catastrophic consequences depending @pfiieation and error recovery scheme). The more
severe the consequences, the more likely it wibdud that the deadline is "hard" and thus, that th
system is a hard real-time system. Real-time systdrthe other end of this continuum are said @ ha
"soft" deadlines—a soft real-time systefngure 1-1shows some examples of hard and soft real-time
systems.

Figure 1-1. A range of example real-time systems

Non- < Soft > Hard
real time real time real tim
Computer User Internet Cruise Tele- Flight Electro
simulation interface video control communications control engin

Real-time system design is not simply about spPeddlines for real-time systems vary; one deadline
might be in a millisecond, while another is an haway. The main concern for a real-time system is
that there is a guarantee that the hard deadlintbe system are always met. In order to accomphigh
the system must be predictable.

The architecture of the embedded software, andtgsaction with the system hardware, play a kég ro
in ensuring that real-time systems meet their deesll Key software design issues include whether
polling is sufficient or interrupts should be usadd what priorities should be assigned to theowari
tasks and interrupts. Additional forethought musirgo understanding the worst-case performance
requirements of the specific system activities.

All of the topics and examples presented in thiskoare applicable to the designers of real-time
systems. The designer of a real-time system mustdrse diligent in his work. He must guarantee
reliable operation of the software and hardwaresumdl possible conditions. And, to the degree that
human lives depend upon the system's proper exectitis guarantee must be backed by engineering
calculations and descriptive paperwork.
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1.2. Variations on a Theme

Unlike software designed for general-purpose coersyembedded software cannot usually be run on
other embedded systems without significant modifica This is mainly because of the incredible
variety of hardware in use in embedded systems h@ngware in each embedded system is tailored
specifically to the application, in order to keggtem costs low. As a result, unnecessary circistry
eliminated and hardware resources are shared wdrgpessible.

In this section, you will learn which hardware fgats are common across all embedded systems and
why there is so much variation with respect to alstut everything else. Later in the book, we lailk

at some techniques that can be used to minimizenpact of software changes so they are not needed
throughout all layers of the software.

1.2.1. Common System Components

By definition, all embedded systems contain a pgeceand software, but what other features do they
have in common? Certainly, in order to have sofewtrere must be a place to store the executalke co
and temporary storage for runtime data manipulafitvese take the form of read-only memory (ROM)
and random access memory (RAM), respectively; raodiedded systems have some of each. If only a
small amount of memory is required, it might beteamed within the same chip as the processor.
Otherwise, one or both types of memory reside tere@al memory chips.

All embedded systems also contain some type oftsniid outputs. For example, in a microwave oven,
the inputs are the buttons on the front panel atedrgerature probe, and the outputs are the human-
readable display and the microwave radiation. Tutputs of the embedded system are almost always a
function of its inputs and several other factotagsed time, current temperature, etc.). The infuutee
system usually take the form of sensors and pramesmunication signals, or control knobs and
buttons. The outputs are typically displays, comitation signals, or changes to the physical world.
SeeFigure 1-2for a general example of an embedded system.

Figure 1-2. A generic embedded system

Inputs Processor Outputs
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With the exception of these few common features réist of the embedded hardware is usually unique
and, therefore, requires unique software. Thisatiam is the result of many competing design dater

The software for the generic embedded system sloWwigure 1-2varies depending on the
functionality needed. The hardware is the blankvaanand the software is the paint that we add in
order to make the picture come to lifegure 1-3gives just a couple of possible high-level diaggam
that could be implemented on such a generic emloesigstem.

Figure 1-3. (a) Basic embedded software diagram ghyla more complex embedded software

diagram
Application
Real-time
Application Operating Hg?;ﬁrk
System
Device Drivers Device Drivers
Hardware Hardware
A B

Both the basic embedded software diagrafigure 1-§a) and the more complex embedded software
diagram inFigure 1-3b) contain very similar blocks. The hardware bleckommon in both diagrams.

The device drivers are embedded software moduégsctimtain the functionality to operate the
individual hardware devices. The reason for theadegiriver software is to remove the need for the
application to know how to control each piece afdwaare. Each individual device driver would
typically need to know only how to control its hesare device. For instance, for a microwave oven,
separate device drivers control the keypad, digpéagperature probe, and radiation control.

If more functionality is required, it is sometimescessary to include additional layers in the erdbdd
software to assist with this added functionalitythis example, the complex diagram includes & real
time operating system (RTOS) and a networking stihke RTOS can help the programmer separate the
application's functionality into distinct tasks foetter organization of the application softward an

more responsive system. We will investigate theaisen RTOS later in this book. The network stack
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also adds to the functionality of the basic embddsestem; a microwave oven might use it to pop up a
message on your desktop computer when your luncrady.

The responsibilities of the application softwargelais the same in both the basic and the complex
embedded software diagrams. In a microwave ovengpiplication processes the different inputs and
controls the outputs based on what the user comsnatwdo.

You'll notice that the software frigure 1-3is represented by discrete blocks stacked onftop®

another with fixed borders. This is done delibdyat® indicate the separation of the differentwaire
functional layers that make up the complete embe@ddéware system. Later, we will break down these
blocks further to show you how you can keep youbedded software clean, easy to read, and portable.
Keeping these software layers distinct, with walfided methods that neighboring layers can use to
communicate, helps you write good embedded software

1.2.2. Requirements That Affect Design Choices

Each embedded system must meet a completely diffset of requirements, any or all of which can
affect the compromises and trade-offs made duhagievelopment of the product. For example, if the
system must have a production cost of less thanchér desirable traits—such as processing power
and system reliability—might need to be sacrifiaedrder to meet that goal.

Of course, production cost is only one of the gasstonstraints under which embedded hardware
designers work. Other common design requiremenctade:

Processing power

The workload that the main chip can handle. A comnvay to compare processing power is the
millions of instructions per second (MIPS) ratitigwo otherwise similar processors have
ratings of 25 MIPS and 40 MIPS, the latter is gaitbe the more powerful. However, other
important features of the processor need to beiderezl. One is the register width, which
typically ranges from 8 to 64 bits. Today's gen@@ipose computers use 32- and 64-bit
processors exclusively, but embedded systemsiinaainly built with less costly 4-, 8-, and
16-bit processors.

Memory

The amount of memory (ROM and RAM) required to hiblel executable software and the data
it manipulates. Here the hardware designer mustllysonake his best estimate up front and be
prepared to increase or decrease the actual arasuhé software is being developed. The
amount of memory required can also affect the mameselection. In general, the register width
of a processor establishes the upper limit of theuant of memory it can access (e.g., a 16-bit
address register can address only 64 K8 Y2emory locations}
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[T The narrower the register width, the more likeligithat the processor employs tricks such as
multiple address spaces to support more memoryeTdre still embedded systems that do the
job with a few hundred bytes. However, several §amal bytes is a more likely minimum, even
on an 8-bit processor.

Number of units

The expected production run. The trade-off betw@eduction cost and development cost is
affected most by the number of units expected tprbduced and sold. For example, it rarely
makes sense to develop custom hardware compomerasdw-volume product.

Power consumption

The amount of power used during operation. Thextsemely important, especially for battery-
powered portable devices. A common metric usedtopare the power requirements of
portable devices is mW/MIPS (milliwatts per MIP8)e greater this value, the more power is
required to get work done. Lower power consumptian also lead to other favorable device
characteristics, such as less heat, smaller bettdess weight, smaller size, and simpler
mechanical design.

Development cost

The cost of the hardware and software design psese&nown as nonrecurring engineering
(NRE). This is a fixed, one-time cost, so on sommgets, money is no object (usually for high-
volume products), whereas on other projects, thiee only accurate measure of system cost
(for the production of a small number of units).

Lifetime
How long the product is expected to stay in use fHyuired or expected lifetime affects all
sorts of design decisions, from the selection oflWware components to how much system

development and production is allowed to cost. Hmvg must the system continue to function
(on average)? A month, a year, or a decade?

Reliability
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How reliable the final product must be. If it i€lildren's toy, it may not have to work properly
100 percent of the time, but if it's an antiloclking system for a car, it had sure better do what
it is supposed to do each and every time.

In addition to these general requirements, eadesyblas detailed functional requirements. These are
the things that give the embedded system its uridprity as a microwave oven, pacemaker, or pager.

Table 1-lillustrates the range of typical values for eatthe previous design requirements. The "low,"
"medium,"” and "high" labels are meant for illusivatpurposes and should not be taken as strict
deliniations. An actual product has one selectitomfeach row. In some cases, two or more of the
criteria are linked. For example, increases in ireguprocessing power could lead to increased
production costs. Conversely, we might imagine thatsame increase in processing power would have
the effect of decreasing the development costs—edyaing the complexity of the hardware and
software design. So the values in a particularrooldo not necessarily go together.

Table 1-1. Common design requirements for embedsigstems

Criterion Low Medium High
Processor 4- or 8-bit 16-bit 32- or 64-bit
Memory < 64 KB 64 KBto1 MB >1MB
Development cost < $100,000 $100,000 to $1,000,000> $1,000,000
Production cost <$10 $10 to $1,000 > $1,000
Number of units <100 100 to 10,000 > 10,000
Power consumption > 10 mW/MIPS 1to 10 mW/MIPS RW/MIPS
Lifetime Days, weeks, or months Years Decades
Reliability May occasionally fail Must work reliapl Must be fail-proof

1.3. Embedded Design Examples

To demonstrate the variation in design requiremfzata one embedded system to the next, as well as
the possible effects of these requirements on éindware, we will now take some time to describeghr
embedded systems in some detail. Our goal is tgquuin the system designer's shoes for a few
moments before narrowing our discussion to embedd#tdiare development.

1.3.1. Digital Watch

At the current peak of the evolutionary path thegdn with sundials, water clocks, and hourglasses i
the digital watch. Among its many features aregresentation of the date and time (usually to the
nearest second), the measurement of the length @fent to the nearest hundredth of a second hend t
generation of an annoying little sound at the beigip of each hour. As it turns out, these are very
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simple tasks that do not require very much proogsgower or memory. In fact, the only reason to
employ a processor at all is to support a rangaafels and features from a single hardware design.

The typical digital watch contains a simple, inexgige 4-bit processor. Because processors with such
small registers cannot address very much memasytype of processor usually contains its own on-
chip ROM. And, if there are sufficient registersdable, this application may not require any RAM a
all. In fact, all of the electronics— processor,maey, counters, and real-time clocks—are likelyp&
stored in a single chip. The only other hardwaeeneints of the watch are the inputs (buttons) and
outputs (display and speaker).

A digital watch designer's goal is to create a@aably reliable product that has an extraordindaly
production cost. If, after production, some watchesfound to keep more reliable time than mosty th
can be sold under a brand name with a higher maRapthe rest, a profit can still be made by sglli
the watch through a discount sales channel. Foermost versions, the stopwatch buttons or speaker
could be eliminated. This would limit the functidityaof the watch but might require few or even no
software changes. And, of course, the cost ohaldevelopment effort may be fairly high, becaitise
will be amortized over hundreds of thousands onewélions of watch sales.

In the case of the digital watch, we see that sarfwespecially when carefully designed, allows
enormous flexibility in response to a rapidly chiaggand highly competitive market.

1.3.2. Video Game Player

When you pull the Sony PlayStation 2 out from yentertainment center, you are preparing to use an
embedded system. In some cases, these machines@@owerful than personal computers of the
same generation. Yet video game players for theehmiarket are relatively inexpensive compared with
personal computers. It is the competing requiremehhigh processing power and low production cost
that keep video game designers awake at night.

The companies that produce video game players demdlly care how much it costs to develop the
system as long as the production costs of thetmnegyroduct are low—typically around a hundred
dollars. They might even encourage their engineedesign custom processors at a development cost
of millions of dollars each. So, although there Imilge a 64-bit processor inside your video game
player, it is probably not the same processormatld be found in a general-purpose computer.lin al
likelihood, the processor is highly specializedtfee demands of the video games it is intendedatn p

Because production cost is so crucial in the hoideovgame market, the designers also use tricks to
shift the costs around. For example, one tactic lmove as much of the memory and other peripheral
electronics as possible off of the main circuitfoband onto the game cartridgtd. This helps to
reduce the cost of the game player but increasegrtbe of every game. So, while the system might
have a powerful 64-bit processor, it might havey@few megabytes of memory on the main circuit
board. This is just enough memory to bootstraprehine to a state from which it can access
additional memory on the game cartridge.

i For example, Atari and Nintendo have designed saitiegeir systems this way.
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We can see from the case of the video game plageirt high-volume products, a lot of development
effort can be sunk into fine-tuning every aspeci groduct.

1.3.3. Mars Rover

In 1976, two unmanned spacecrafts arrived on taegbiMars. As part of their mission, they were to
collect samples of the Martian surface, analyzectiemical makeup of each, and transmit the results
scientists back on Earth. Those Viking missionsanenazing. Surrounded by personal computers that
must be rebooted occasionally, we might find itaekable that more than 30 years ago, a team of
scientists and engineers successfully built twomaters that survived a journey of 34 million misesd
functioned correctly for half a decade. Clearlyiatality was one of the most important requirengent

for these systems.

What if a memory chip had failed? Or the softwaad hontained bugs that had caused it to crash® Or a
electrical connection had broken during impact?ré&h& no way to prevent such problems from
occurring, and on other space missions, these gmabhave proved ruinous. So, all of these potential
failure points and many others had to be eliminégddding redundant circuitry or extra functionali

an extra processor here, special memory diagndkics, a hardware timer to reset the system if the
software got stuck, and so on.

More recently, NASA launched the Pathfinder missitprimary goal was to demonstrate the
feasibility of getting to Mars on a budget. Of caeirgiven the advances in technology made since the
mid-70s, the designers didn't have to give up tachrto accomplish this. They might have reduced the
amount of redundancy somewhat, but they still gaatafinder more processing power and memory
than Viking. The Mars Pathfinder was actually twobedded systems: a landing craft and a rover. The
landing craft had a 32-bit processor and 128 MBRAM,; the rover, on the other hand, had only ant8-bi
processor and 512 KB of RAM. These choices retleedifferent functional requirements of the two
systems. Production cost probably wasn't much aésue in either case; any investment would have
been worth an improved likelihood of success.

1.4. Life As an Embedded Software Developer

Let's now take a brief look at some of the qualitié embedded software that set embedded developers
apart from other types of software developers. mbedded software developer is the one who gets her
hands dirty by getting down close to the hardware.

Embedded software development, in most cases,resgeibse interaction with the physical world—the
hardware platform. We say "in most cases" becéwese tare very large embedded systems that require
individuals to work solely on the application-laygaftware for the system. These application devesop
typically do not have any interaction with the haade. When designed properly, the hardware device
drivers are abstracted away from the actual harelsarthat a developer writing software at the
application level doesn't know how a string getgpatito the display, just that it happens when a
particular routine is called with the proper partene
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Hardware knowledge

The embedded software developer must become imiyni@miliar with the integrated circuits,
the boards and buses, and the attached devicesnuseter to write solid embedded software
(also called firmware). Embedded developers shauténafraid to dive into the schematics,
grab an oscilloscope probe, and start poking aroldircuit to find out what is going on.

Efficient code

Because embedded systems are typically designbadheteast powerful and most cost-
effective processor that meets the performanceneqants of the system, embedded software
developers must make every line of code count.altlgy to write efficient code is a great
guality to possess as a firmware developer.

Peripheral interfaces

At the lowest level, firmware is very specializégécause each component or circuit has its own
activity to perform and, furthermore, its own wdyperforming that activity. Embedded
developers need to know how to communicate withdifferent devices or peripherals in order
to have full control of the devices in the syst&waacting to stimuli from external peripherals is
a large part of embedded software development.

For example, in one microwave oven, the firmwarghhget the data from a temperature sensor
by reading an 8-bit register in an external anatsdigital converter; in another system, the data
might be extracted by controlling a serial bus thagrfaces to the external sensor circuit via a
single wire.

Robust code

There are expectations that embedded systemsuwifior years in most cases. This is not a
typical requirement for software applications venittfor a PC or Mac. Now, there are exceptions.
However, if you had to keep unplugging your micrge/an order to get it to heat up your lunch
for the proper amount of time, it would probablythe last time you purchased a product from
that company.

Minimal resources
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Along the same lines of creating a more robustesysanother large differentiator between
embedded software and other types of softwares@uree constraints. The rules for writing
firmware are different from the rules for writingfavare for a PC. Take memory allocation, for
instance. An application for a modern PC can takgfanted that it will have access to
practically limitless resources. But in an embedsigstem, you will run out of memory if you do
not plan ahead and design the software properly.

An embedded software developer must closely maresgrirces, from memory to processing
power, so that the system operates up to speaificand so failures don't occur. For example,
using standard dynamic memory allocation functicenrs cause fragmentation, and eventually
the system may cease to operate. This requirdsoatreince you have no place to store
incoming data.

Quite often, in embedded software, a developeralliticate all memory needed by the system at
initialization time. This is safer than using dynammemory allocation, though it cannot always
be done.

Reusable software

As we mentioned before , code portability or coslese—writing software so that it can be
moved from hardware platform to hardware platforma-~very useful to aid transition to new
projects. This cannot always be done; we have keerindividual each embedded system is.
Throughout this book, we will look at basic metheol®nsure that your embedded code can be
moved more easily from project to project. So ifiyaext project uses an LCD for which you've
previously developed a driver, you can drop indltecode and save some precious time in the
schedule.

Development tools

The tools you will use throughout your career agmbedded developer will vary from
company to company and often from project to pitoj€bis means you will need to learn new
tools as you continue in your career. Typicallgsh tools are not as powerful or as easy to use
as those used in PC software development.

The debugging tools you might come across coulg fram a simple LED to a full-blown in-
circuit emulator (ICE). This requires you, as tlientvare developer, and the one responsible for
debugging your code, to be very resourceful ane lzalvag of techniques you can call upon
when the debug environment is lacking. Throughbettook, we will present different "low-
level software tools" you can implement with lititepact on the hardware design.
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These are just a few qualities that separate endoesloftware developers from the rest of the paak. W
will investigate these and other techniques thatspecific to embedded software development as we
continue.

1.5. The C Language: The Lowest Common Denominator

One of the few constants across most embeddedsystehe use of the C programming language.
More than any other, C has become the languagelbééded programmers. This has not always been
the case, and it will not continue to be so forettawever, at this time, C is the closest thingéhe to

a standard in the embedded world. In this secti@] explain why C has become so popular and why
we have chosen it as the primary language of ik b

Because successful software development so frelgugends on selecting the best language for a
given project, it is surprising to find that onedmage has proven itself appropriate for both &bd
64-bit processors; in systems with bytes, kilobyse®l megabytes of memory; and for development
teams that range from one to a dozen or more pedptahis is precisely the range of projects irnckh
C has thrived.

The C programming language has plenty of advantdigessmall and fairly simple to learn, compilers
are available for almost every processor in usaytpdnd there is a very large body of experienced C
programmers. In addition, C has the benefit of essor-independence, which allows programmers to
concentrate on algorithms and applications ratiem bn the details of a particular processor
architecture. However, many of these advantagely agpally to other high-level languages. So why
has C succeeded where so many other languageangeky failed?

Perhaps the greatest strength of C—and the thatgs#ts it apart from languages such as Pascal and
FORTRAN—is that it is a very "low-level" high-levinguage. As we shall see throughout the book, C
gives embedded programmers an extraordinary dedmiect hardware control without sacrificing the
benefits of high-level languages. The "low-levediture of C was a clear intention of the language's
creators. In fact, Brian W. Kernighan and DennisR¥chie included the following comment in the
opening pages of their book The C Programming LaggyPrentice Hall):

C is arelatively "low level" language. This chagaization is not pejorative; it simply means tfat
deals with the same sort of objects that most caéenpulo. These may be combined and moved about
with the arithmetic and logical operators implensehiby real machines.

Few popular high-level languages can compete wit tGe production of compact, efficient code for

almost all processors. And, of these, only C allpweggrammers to interact with the underlying
hardware so easily.

1.5.1. Other Embedded Languages

Of course, C is not the only language used by eddstgrogrammers. At least four other languages—
assembly, C++, Forth, and Ada—are worth mentiomngyeater detail.
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In the early days, embedded software was writt@fusiely in the assembly language of the target
processor. This gave programmers complete conttblegprocessor and other hardware, but at a price.
Assembly languages have many disadvantages, ntdasieof which are higher software development
costs and a lack of code portability. In additibnding skilled assembly programmers has become
much more difficult in recent years. Assembly isvngsed primarily as an adjunct to the high-level
language, usually only for startup system coddnosé¢ small pieces of code that must be extremely
efficient or ultra-compact, or cannot be writteraimy other way.

Forth is efficient but extremely low-level and unak learning to get work done with it takes maneet
than with C.

C++ is an object-oriented superset of C that isgasingly popular among embedded programmers. All
of the core language features are the same ast C#suadds new functionality for better data
abstraction and a more object-oriented style ofmmming. These new features are very helpful to
software developers, but some of them reduce fiwegicy of the executable program. So C++ tends to
be most popular with large development teams, witerdenefits to developers outweigh the loss of
program efficiency.

Ada is also an object-oriented language, thougistambially different from C++. Ada was originally
designed by the U.S. Department of Defense fod#welopment of mission-critical military software.
Despite being twice accepted as an internatioaaldstrd (Ada83 and Ada95), it has not gained much of
a foothold outside of the defense and aerospacssines. And it has been losing ground there iemec
years. This is unfortunate because the Ada langbhagenany features that would simplify embedded
software development if used instead of C or C++.

1.5.2. Choosing a Language for the Book

A major question facing the authors of a book saglhis one is which programming language or
languages to discuss. Attempting to cover too manguages might confuse the reader or detract from
more important points. On the other hand, focusiognarrowly could make the discussion
unnecessarily academic or (worse for the authadgpablisher) limit the potential market for the Boo

Certainly, C must be the centerpiece of any boauabmbedded programming, and this book is no
exception. All of the sample code is written inaDd the discussion will focus on C-related
programming issues. Of course, everything thatid about C programming applies equally to C++.

We will use assembly language only when a partrqudagramming task cannot be accomplished in any
other way.

We feel that this focus on C with a brief introdaotto assembly most accurately reflects the way
embedded software is actually developed today laaevay it will continue to be developed in the near
term. This is why examples in this edition do ne¢ €++. We hope that this choice will keep the
discussion clear, provide information that is us&dipeople developing actual systems, and inchsle
large a potential audience as possible. Howevedaeover the impact of C++ on embedded software

in Chapter 14
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Fixed Width Integers: Sometimes Size Matters

Computer programmers don't always care how widatager is when held by the process
For example, when we write:

inti;

for (i=0;i<N; i++)

{
-

we generally expect our compiler to generate thstrfiicient code possible, whether that
makes the loop counter an 8-, 16-, 32-, or evehibguantity.

As long as the integer is wide enough to hold tl&imum valueK|, in the example just
shown), we want the processor to be used in the effosient way. And that's precisely whi
the ISO C and C++ standards tell the compiler wtaiedo: choose the most efficient intege
size that will fulfill the specific request. Becausf the variable size of integers on differen
processors and the corresponding flexibility of ldreguage standards, the previous code |
result in a 32-bit integer with one compiler butGbit integer with another—possibly ever
when the very same processor is targeted.

But in many other programming situations, integee snatters. Embedded programming, i
particular, often involves considerable manipulatd integer data of fixed widths.

In hindsight, it sure would've been nice if thehas of the C standard had defined some
standard names and made compiler providers resperisr providing the appropriate
typedef for each fixed-size integer type in a ligraeader file. Alternatively, the C standarc
could have specified that each of the tygrest , int , andlong has a standard width on all
platforms; but that might have had an impact oriquarance, particularly on 8-bit processc
that must implement 16- and 32-bit additions in tinaktruction sequences.

Interestingly, it turns out the 1999 update toltiternational Organization for
Standardization's (ISO) C standard (also refeweabtC99) did just that. The ISO has final
put the weight of its standard behind a preferetdf names for signed and unsigned fixel
size integer data types. The newly defined typeesaane:

8-bit:int8 t , uint8_t

16-bit;int16_t , uint16_t

32-bit:int32_t , uint32_t

at

may

q
(7]

ly
j_
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64-bit:int64_t , uint64_t

According to the updated standard, this requireé@se/pedefs (along with some others) is to
be defined by compiler vendors and included innée header filstdint.h

If you're already using a C99-compliant compilars new language feature makes that
declaration of a fixed-width integer variable aregister as straightforward as using one of
the new type names.

Even if you don't have an updated compiler, th&usion of these names in the C99 standard
suggests that it's time to update your coding stadsdand practices. Love them or hate them,
at least these new names are part of an accepegdational standard. As a direct result, it
will be far easier in the future to port C progratmat require fixed-width integers to other
compilers and target platforms. In addition, modulet are reused or sold with source can
be more easily understood when they conform tadst@hnaming and typing conventions
such as those in C99.

If you don't have a C99-compliant compiler yet, Yidwave to write your own set of typedefs,
using compiler-specific knowledge of thiear , short , andiong primitive widths.

For the examples in this book, we use the C99 $tyleariable types that require specific
widths. We have generated our osidint.hthat is specific to thgccvariant targeting the
ARM XScale processor. Our file may not work in atbeild environments.

1.5.3. Consistent Coding Practices

Whatever language is selected for a given projeistimportant to institute some basic coding
guidelines or styles to be followed by all develgpen a project. Coding guidelines can make reading
code easier, both for you and for the next develtps has to inherit your code. Understanding #ixac
what a particular software routine is doing isidifft enough without having to fight through severa
changes in coding style that emerged because aarwhdifferent developers touched the same routine
over the years, each leaving his own unique maskisgc issues, such as how variables are named or
where the curly brace should reside, can be vergopal to some developers.

There are a number of decent coding standardsritpatound on the Internet. One standard we like is
located online alittp://www.ganssle.corand was developed by Jack Ganssle. Another théikeyeby
Miro Samek, is located online fattp://www.quantum-leaps.cam

These standards give you guidelines on everythimg flirectory structures to variable names andare
great starting point; you can incorporate into titestyles that you find necessary and helpfid. If
coding standard for the entire team is not somgtkiou can sell your company on, use one yourself an
stick to it.

Page 24



Programming Embedded Systems Second Edition

1.6. A Few Words About Hardware

It is the nature of programming that books aboatdihbject must include examples. Typically, these
examples are selected so that interested readeesasdy experiment with them. That means readers
must have access to the very same software develdgools and hardware platforms used by the
authors. Unfortunately, it does not make sensarnany of the example programs on the platforms
available to most readers—PCs, Macs, and Unix viatikss.

Even selecting a standard embedded platform igdiff As you have already learned, there is ndsuc
thing as a "typical" embedded system. Whateveniarel is selected, the majority of readers will not
have access to it. But despite this rather sigmifiproblem, we do feel it is important to select a
reference hardware platform for use in the exampheso doing, we hope to make the examples
consistent and, thus, the entire discussion me@-etwhether you have the chosen hardware in friont o
you or not.

In choosing an example platform, our first criteriwas that the platform had to have a mix of
peripherals to support numerous examples in th&.doaddition, we sought a platform that would
allow readers to carry on their study of embedddthsre development by expanding on our examples
with more advanced projects. Another criterion ¥eand a development board that supported the
GNU software development tools; with their openrseulicensing and coverage on a wide variety of
embedded processors, the GNU development toolsaveideal choice.

The chosen hardware consists of a 32-bit procésberXScale ARMJ;! a hefty amount of memory

(64 MB of RAM and 16 MB of ROM), and some commopésy of inputs, outputs, and peripheral
components. The board we've chosen is called tRER}Lite and is manufactured and sold by Arcom.
A picture of the Arcom VIPER-Lite development bo&atbng with the add-on module and other
supporting hardware) is shownhigure 1-4 Additional information about the Arcom board and
instructions for obtaining one can be foundAppendix A

1 The processor on the VIPER-Lite board is the PXAXScale processor, which is based on the
ARM v.5TE architecture. The XScale processor waelbped by an Intel Corporation embedded
systems division that was sold to Marvell Techngl@goup in July 2006.

Figure 1-4. The Arcom VIPER-Lite development boards
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If you have access to the reference hardware, yibbevable to work through the examples in thekboo
as they are presented. Otherwise, you will negubtbthe example code to an embedded platform that
you do have access to. Toward that end, we have easty effort to make the example programs as
portable as possible. However, the reader showdibhemind that the hardware is different in each
embedded system and that some of the examples beghtaningless on hardware different from the
hardware we have chosen here. For example, it wmtiutthke sense to port our flash memory driver to a
board that had no flash memory devices.

Although we will get into some basic details abbatdware, the main focus of this book is embedded
software. We recommend that you take a look atd»ésyy Embedded Systems by John Catsoulis

(O'Reilly). John has an extensive background orstigect and does a wonderful job presenting often
difficult material in a very understandable waymidkes a great companion for this book.

Chapter 2. Getting to Know the Hardware
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hard-ware n. The part of a computer system thatheakicked.

As an embedded software engineer, you'll have piperdunity (and challenge) to work with many
different pieces of hardware in your career. I3 tthapter, we will begin by taking a look at theiba
in understanding a schematic. We will also teaahggimple procedure that we use to familiarize
ourselves with any new board. In the process, geitle you through the creation of a C-language
header file that describes the board's most impoféatures and a piece of software that initialites
hardware to a known state.

2.1. Understanding the Big Picture

Before writing software for an embedded system, iymust first be familiar with the hardware on which

it will run. At first, you just need to understatite general operation of the system, such as \ubat t
board's main function is and what the inputs artguts are. Initially, you do not need to understand
every little detail of the hardware—how every comgmot or peripheral operates and what registers need
to be programmed for particular functions.

Whenever you receive a new board, you should takeedime to read the main documents provided
with it. If the board is an off-the-shelf produtttmight arrive with a "User's Guide" or "Progranmae
Manual" that has been written for software develsp@he Arcom development kit, for example,
includes this information as well as datasheetsllanajor components on the board.) However,ef th
board was custom designed for your project, themh@ntation might be more cryptic or may have been
written mainly for the reference of the hardwarsigeers. Either way, this is the single best ptace

start.

While you are reading the documentation, set tladiself aside. This will help you to focus o th
big picture. There will be plenty of time to examitihe actual board more closely when you have
finished reading. Before picking up the board, gbould be able to answer two basic questions about

« What is the overall purpose of the board?
« How does data flow through it?

For example, imagine that you are a software d@eslon a design team building a print server. You
have just received an early prototype board froenhidwrdware designers. The purpose of the boaad is t
share a printer among several computers. The haedwads data from a network connection and sends
that data to a printer for output. The print semweist mediate between the computers and decidéhnwhic
computer from the network gets to send data tetimer. Status information also flows in the opp®s
direction to the computers on the network.

Though the purpose of most systems is self-expdapaihe flow of the data might not be. We oftemdfi
that a block diagram is helpful in achieving rapamprehension. If you are lucky, the documentation
provided with your hardware will contain a bloclagiam. However, you might also find it useful to
create your own block diagram. That way, you cawdeout hardware components that are unrelated to
the basic flow of data through the system.
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In the case of the Arcom board, the hardware wagded for demonstration purposes rather than with
one specific application in mind. However, we'llagine that it has a purpose. The user of the device
connects the computers to the Ethernet port antheepto the parallel port. Any computer on the
network can then send documents to the printeaghonly one of them can do so at a given time.

The diagram irkigure 2-1lillustrates the flow of data through the printwear (Only those hardware
devices involved in this application of the Arcowmalbd are shown.) By looking at the block diagram,
you should be able to quickly visualize the flowtlo¢ data through the system. Data to be printed is
accepted from the Ethernet controller, held in RAMil the printer is ready for more data, and
delivered to the printer via the parallel port.t8sainformation is fed back to the various compaiter
requesting output on the printer. The software thakes all of this happen is stored in ROM. Not th
the PC/104 bus includes buffered signals of theesddand data buses in addition to other signals.

Figure 2-1. Block diagram for the print server

RAM ROM
(64 MB) (16 MB)
e | —— Data Bus I Intel PXA255 XScale
— Address Bus I Processor
=
oy = &
SMSC + +
Ethernet Parallel
Controller Port
Printer
(omputer <g—p Network <= Computer *

In order to get a better idea of how the block chagrelates to the actual hardware on the Arcomdboa
for our print server device, examif@ure 2-2 which shows the diagram overlaid on top of theokn
board. This figure gives you a better idea of fhe involved in the print server device and howdhta

is routed through the actual hardware.

Figure 2-2. Block diagram for the print server onréom board
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We recommend creating a project notebook or birdece you've created a block diagram, place it as
the first page in your project notebook. You nadthandy so you can refer to it throughout the mbje
As you continue working with this piece of hardwasegite down everything you learn about it in your
notebook. If you get a useful handout at a meepngjt into your notebook. Put tabs in there sa yo
can quickly jump to important information that ymfer to all the time. You might also want to keep
notes about the software design and implementatiavery useful to refer back to your notes to
refresh your memory about why a particular decisias made for the software. A project notebook is
valuable not only while you are developing thewafe, but also once the project is complete. Ydu wi
appreciate the extra effort you put into keepimgptebook in case you need to make changes to your
software, or work with similar hardware, monthsyears later.

If you still have any big-picture questions afteading the hardware documents, ask a hardware
engineer for some help. If you don't already knbe/hardware's designer, take a few minutes to
introduce yourself. If you have some time, take bumto lunch, or buy him a beer after work. (You
don't even have to talk about the project the whiole!) We have found that many software engineers
have difficulty communicating with hardware engirggend vice versa. In embedded systems
development, it is especially important that thedinaare and software teams be able to communicate
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with one another. This chapter will give you a ddbundation so that you can speak the languagjeeof
hardware engineer.

Before moving on, let's take a brief detour to dretinderstand the basics of hardware and schematics
2.2. Hardware Basics

The next step in understanding the hardware iake & look at the schematic. A schematic is a dhgwi
comprised of standardized symbols to represemif alcircuit's components and connections. The
schematic gives the details of the hardware, shgp#ia individual components represented in thekbloc
diagram, how the components are interconnected,maost importantly, where to put the oscilloscope
probe to see what's going on with a particularuiir©n most projects, it is not necessary for §@u
understand how every electrical circuit on the dagpyerates, but you do need to understand the basic
operation of the hardware.

Along with the user's guides or manuals for therthoiis also helpful to collect the datasheetsafib
major components on your board. The datasheetasnplete specification of a particular hardware
component, including electrical, timing, and ing=é parameters.

Often the hardware engineer has already collettedatasheets; if so, your work is partly complete.
You might want to take a look at the other inforimatavailable for a particular component, because
there are often separate hardware and softwarerdous, especially for more complex devices. For
example, a processor often includes a Programi@ertie in addition to the other literature. These
documents can give you valuable information fongsiarious features of the processor; they
occationally even provide code snippets.

There are also application notes that addresscplatiissues associated with a specific comporiteist.
a good idea to look for any errata documents fladalices. The device's errata will give you a tseap
on any issues regarding the way a device operates more importantly, workarounds for these issues

It's a good idea to periodically check for updatethe board components' information. This will sav
you the frustration of chasing a problem that wesd in the latest datasheet. All of this informatis
an asset when you are trying to understand a nege @f hardware. You can generally find these
documents on the manufacturer's web site.

2.2.1. Schematic Fundamentals

Before we take a look at a schematic, let's go eware of the basics of schematiégjure 2-3shows
some of the basic schematic symbols you will conress, although there might be some variations in
symbols from schematic to schematic. The first ewigives the name of the particular component; the
second column shows the reference designator prefiemponent name; and the third column shows
the symbols for the related component.

Figure 2-3. Basic schematic symbols
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Reference
Component Designator Prefix Symbol
Resistor R —/\/\/\—
(apacitor C #
Diode D N N 7
.
Crystal X 1
T
Inductor L
Power VCC ? T
Ground GND $ J__

You may notice that two symbols are shown for tioelel component. The symbol on the right is for a
light emitting diode (LED), which we will take adk at shortly.

The symbols for ground and power can also vary fsechematic to schematic; two symbols for power
and ground are included kigure 2-3 In addition to VCC, the reference designator camiy used for
power is VDD. Since many circuits use multiple agk levels, you may also come across power
symbols that are labeled with the actual voltagehsas +5 or +3.3, instead of VCC or VDD. The power
and ground symbols are typically placed verticaly shown, whereas the other symbolBigure 2-3
might show up in any orientation.

A reference designator is a combination of lettetsnbers, or both, which are used to identify
components on a schematic. Reference designafmcally include a number to aid in identifying a
specific part in the schematic. For example, theséstors in a schematic might have reference
designators R4, R21, and R428. The reference dasignare normally silkscreened (a painted overlay)
on the circuit board for part identification.
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Along with the reference designators, certain comepds (such as capacitors, inductors, and resjstors
are marked by their associated values. For exanmplegure 2-4 resistor R39 has a value of 680 W.

The values for some components on a schematicrétewin a way to aid
e | clarification. For example, a resistor with a vatiel.7 kW has its value written
" d&t as 4K7. A resistor with a value of 12.4 W is writi@s 12R4. Using this method,|it
is easier to understand the value of the compastenild the decimal fail to print

properly.

¥
-.
L
L

You will also notice that integrated circuit syméaire not included in this figure. That is becdGse
schematic representations vary widely. Typicallijaadware engineer needs to create his own
schematic symbol for the ICs used in the desigs.thien up to the hardware engineer to use tterede
method possible to capture and represent the y@ibal.

The reference designator for ICs can vary as Wgfpically, the letter U is used. The Arcom board
schematic, however, uses the reference desigr@tor |

IC symbols also include a component type or pamber used by the manufacturer. The component
type is often helpful when you need to hunt for daéasheets for the parts of a particular design.
Descriptive text might save you the trouble of glering the markings and codes on the top of a
specific IC.

Now that we have an introduction to the symbolslise schematic, let's take a look at a schematic.
Figure 2-4is a partial schematic of a fictional board. listlgure, we show some of the connections on
the processor.

Figure 2-4. Example schematic
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b The italic labels and associated arrows are natgdahe original schematic.

s These are included to point out particular aspefctse schematic. We wanted t¢
note this because quite often text notes are irduil the schematic for
clarification or layout concerns. One such claafion note irnFigure 2-4is the
label OUTPUT PORT on port PL1.

Ty

The processor is the main component in this schenidte symbol for the processor has a reference
designator IC12, which is located at the top ofdf@bol on this schematic. The component type ®f th
processor is PXA255 and is located at the bottothesymbol.

The processor's pins and their associated pin niembe along the sides of the symbol. For example,
bit O of the data bus is named DO and is locatepimmumber 5 of the processor.

You will also notice that some pins, such as PtsQ/pin number 102, have a bar over the pin name.
This indicates that the signal is active low. Timisans a logic level of O will activate the funtibtyaof
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this signal, whereas a logic level of 1 will deaate the function. The opposite type of operatsn i
active high.

Active low functionality can also be indicated bfoaward slash (/) or tilde (~) placed either befor
after the signal name. The signal is then typicatiynounced "not RTS0" or "RTSO bar.” Some
component manufacturers represent an active-lomakigith the prefix "n" in front of the signal name
such as nRESET.

The wire connecting the different components togeit called a net. Two nets that connect create a
junction. On the schematic, a junction point isc¢ated by a dot, as you can seéigure 2-4on the
RESET pin of the processor. In contrast, when tets oross, but are not connected, there is no
junction. This is shown where the net connectetthiéd ED D3 crosses the net /RTS1.

We say that pins not connected to any nets ar@noects or open. No connects are often represented
on a schematic with a small cross at the end ohéeExamples of no connect pins are shown on the
processor pins A21 through A25. Sometimes IC manrtufars will label no connect pins NC.

Related signals, such as data signals or addiggsalsi are represented on a schematic by a tHioker
called a bus net. For example, the data bus isddtg{0..15] (in other schematics the data bus irigh
labeled [D0:D15]), which means the data bus netage up of the signals DO through D15. The
individual signals are shown connecting to the pssor data pins. Similarly, the address bus net is
labeled A[1..20] and is made up of the signals Wbuagh A20. Nets connected to a bus net still need
be individually labeled.

If each net in a schematic were connected to teeatklocation, after a while it could create quaite
rat's nest} Having nets cross over each other is typicallyidagin order to maintain clarity in the
schematic. To facilitate this clarity, the hardwargineer can use net labels to assign names tethe
The convention is that nets marked with the saméabel are connected, even if the engineer did not
actually draw a line connecting them.

[T Incidentally, "rats nest" is the term used to diéscthe connection of nets made during layout.eOnc
you see the initial stage of a layout, you'll urstignd how this name was derived.

For example, irkigure 2-4 a portion of the connector with the referencagiesor PL1 is shown.
(Incidentally, connectors and jumpers often useaé¢ference designator J.) Because the net connexted
pin number 23 of the connector PL1 is labeled A the net connected to the processor's pin number
43 is labeled A2, they are connected even thouglhéndware engineer did not run a line to represent
the A2 net connected from the processor over ta PL1

In order to aid in testing the hardware and sofewhardware engineers often include test pointesa
point is a metallic area on the finished board gratvides access to a particular signal to aithén t
debugging or monitoring of that signal. One teshpavith the reference designator TP11, is shawn i
Figure 2-4on the RESET pin of the processor. With the moventaller and smaller IC packages and
smaller pins, test points are a necessity for dgimggand also aid in production testing. Alsosit i
impossible to probe on any pins of a ball grid a(BGA) package part, because all of the pins are
contained under the IC. In this case, a test gwigs greatly.
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In cases where a schematic cannot fit onto a spage, there must be a way to interconnect nets fro
one page to another. This is the job of the offepegnnector. Off-page connectors can be used for
individual nets or bus nets. For example, the affigoconnector of the data bus is D[0..15]. Thikes

exact same off-page connector name used on the mgrage to connect the processor's data bus to the
RAM's data bus.

We have found a couple of ideas to be useful fbpafje connectors. These might
be useful mainly for the hardware engineer worlinghe schematic, but other
4+ people on the team should know about them, too.

First, it is helpful if the signal type (input, quit, or bidirectional) is properly
represented by the appropriate off-page connethurs, inFigure 2-4 the data
bus off-page connector indicates that these aiieebitbnal signals; the
CPU_RESET off-page connector indicates that tlgsadiis an input to the
processor; and the TX1 off-page connector indictitatthis signal is an output
from the processor.

Another helpful idea is to add a little text noexnto each off-page connector
with the page number(s) where that particular siesed. This might not make
sense for a 5-page schematic, but flipping thra2@pages of schematics can b a
nightmare.

Additional tipsfcan be found in the December 20@#hEdded Systems

Programming ! article "Design for Debugability," which can baifa online at
http://www.embedded.com

(h Embedded Systems Programming magazine has chasgeuane to
Embedded Systems Design.

When you take a look at the full set of schematios, will notice that there is a block at the lower
righthand corner of each page. This is the titbeck] every schematic we have come across has some
version of this. The title block has useful infotioa about the schematic, such as the date, the
designer's name, the revision, a page number awlipigon of the schematic on that page, and adten
list of changes made.

At this point, we have a solid understanding ofglistem components that make up our platform and
how they are interconnected. Let's next see hayet®o know the hardware.

2.3. Examine the Landscape

It is often useful to put yourself in the processghoes for a while. Imagine what it is like tothe
processor. What does the processor's world lo@® IWho is connected to it? How does it talk toehes
other devices?
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If you think about it from this perspective, onéethhyou quickly realize is that the processor hés af
compatriots. These are the other pieces of harderathe board, with which the processor
communicates. The processor has different mettamrdsoimmunicating with these other pieces of
hardware. In this section, you will learn to recagrtheir names and addresses.

The first thing to notice is that there are twoibagpes of hardware to which processors connect:
memories and peripherals. Memories are for thegtand retrieval of data and code. Peripherals are
specialized hardware devices that either coordiméeaction with the outside world or perform a
specific hardware function. For example, two of t@st common peripherals in embedded systems are
serial ports and timers.

Members of Intel's 80x86 and some other processoilies have two distinct address spaces through
which they can communicate with these memoriespangbherals. The first address space is called the
memory space and is intended mainly for memoryaesyithe second is reserved exclusively for
peripherals and is called the 1/0 space. Howewipperals can also be located within the memory
space, at the discretion of the hardware desi§fen that happens, we say that those periphemls ar
memory-mapped and that system has memory-mappe&di@e processors support only a memory
space, in which case all peripherals are memorypedp

From the processor's point of view, memory-mapp&tpperals look and act very much like memory
devices. However, the function of a peripheralugeydifferent from that of a memory device. Instea
of simply storing the data that is provided taiperipheral might instead interpret it as a condran
as data to be processed in some way.

The designers of embedded hardware often prefgsgaanemory-mapped 1/0O exclusively, because it
has advantages for both the hardware and softveseapers. It is attractive to the hardware develop
because she might be able to eliminate the I/Oesf@and some of its associated wires, altogethas. Th
might not significantly lower the production cogttlee board, but it might reduce the complexitytod#
hardware design. Memory-mapped peripherals ma&esésier for the programmer, who can use C-
language pointers, structs, and unions to intevabtthe peripherals more easily.

2.3.1. Memory Map

All processors store their programs and data in angnThis memory may reside on the same chip as
the processor or in external memory chips. Memstgcated in the processor's memory space, and the
processor communicates with it by way of two sétslectrical wires called the address bus and #ia d
bus. To read or write a particular location in meynthe processor first writes the desired addoess

the address bus. Some logic (either on the processo an external circuit), known as an address
decoder, interprets the upper address bits orbtlisand selects the appropriate memory or periphera
chip. The data is then transferred over the dasa Dloe address decoder can be an external ICoday t
many processors include this logic on-chip.

There are also control signals for reading andingito various devices in a processor's memoryespac
that are commonly referred to as the control bbes€ control bus signals include read, write, dmg-c
select (or chip-enable). Some processors combeestd and write signals into a single read/write
signal. On these processors, a read operationferpeed by setting the signal to one level and iewr
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operation is performed by setting the signal todpposite level. For example, if the signal name is
RD/wr (pronounced "read write bar"), the signades to a 1 for a read operation and set to O forite
operation.

The chip-select signal is set to its active levbewthe address for a particular device falls withe
device's address range. For example, let's sayM &vice occupies the address range from 0x0000 to
OxOFFF. When the software instruction accessesahable located at address 0x01F2, the chip-select
for the RAM is set at its active level.

The read and write signals are set to their adtivels by the processor based on the type of memory
transactionFigure 2-5is an example of a timing diagram, a graphicatesgentation of the timing
relationship between the various signals for amgiweeration. The entire diagramHbigure 2-5shows
one read cycle. In this case, the cycle is reatlébits of data from memory. Typically, a table of
timing requirements accompanies a timing diagrahe fiming requirements detail the minimum and
maximum acceptable times for each of the variogisads and the timing relationships among the
signals.

Figure 2-5. Example timing diagram
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The clock signal (CLK) is the basis for all opeoas of the processor and is shown as the top signal
the timing diagram oFigure 2-5 The processor clock is generally a square waatesttquences all
operations of the processor.

The next group of signals are the address bus28]0followed by the data bus, D[0:15]. Such buses
are depicted in timing diagrams as showfigure 2-5 where a single entry represents the entire range
of signals rather than each signal having its omtnye A bus is typically stable (meaning it contam

valid address or data) during the period of timemwthe single line splits into two lines. In hardava
terms, the bus goes from being tristate (singke)lio having real information present (dual lireg)d

then back to being tristate again.
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The next signal is active low chip select (CS/{ after that is the write (WR/) signal, which is@l
active low. Since this is a timing diagram for adeperation, the write signal stays inactive dythre
entire cycle. The last signal is the read (RD/ydeés low (active) after the address is set by the
processor.

Additional examples of timing diagrams for the PX¥&2processor can be found in the Memory
Controller section of the PXA255 Processor Develggdanual as well as the PXA255 Processor
Electrical, Mechanical, and Thermal Specificati@tagheet.

- Some processors might also include other typesmifal signals to help access
o 1 various types of peripheral devices. These sigraatsbe named Ready, Hold,
4+ Hold Acknowledge, Wait, and other things. A hardevangineer can use these
signals to access a wide range of devices, nothbBe that operate slower than
the processor. For example, a slower ROM can wesprttcessor's Hold signal tc
tell the processor it needs more time to complete¢ad of a particular memory

address. The processor can then wait until the ROdble to finish getting the

data for the processor.

While you are reading about a new board, creasbla that shows the name and address range of each
memory device and peripheral that is located imtleenory space. This table is called a memory map.
Organize the table so that the lowest addresstiediottom and the highest address is at theBagh

time you add a device to the memory map, plaaeitsiappropriate location in memory and label the
starting and ending addresses in hexadecimal. ptethave finished inserting all of the device®int

the memory map, be sure to label any unused meragrgns as such.

If you look back at the block diagram of the Arcboard inFigure 2-1 you will see that there are three
devices attached to the address and data busesPdM.04 bus is connected to the address and data
buses through buffers.) These devices are the RA®M, and SMSC Ethernet controller. The RAM is
located at the bottom of the memory address raflge ROM is located toward the top of the range.

Sometimes a single address range, particularlyngmory devices, is comprisec
of multiple ICs. For example, the hardware engimeght use two ROM chips,
J::  each of which has a storage capacity of 1 MB. Fhiss the processor a total of| 2
MB of ROM. Furthermore, the hardware engineer is &b set up the two

individual ROM chips so the processor does not kiaduich chip it is actually
accessing; the division of the two chips is transpito the processor, and it se¢s
the memory as one contiguous block.

The memory map ifigure 2-6shows what the memory devicedhigure 2-1look like to the processor.
Also included inFigure 2-6are the processor's internal peripheral regisksbejed PXA255

Peripherals, which are mapped into the processmtaory space. In a sense, this is the processor's
"address book." Just as you maintain a list of reeamel addresses in your personal life, you must
maintain a similar list for the processor. The mgymoap contains one entry for each of the memories
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and peripherals that are accessible from the psocssmemory space. This diagram is arguably the
most important piece of information about the syster an embedded software engineer and should be
kept up to date and maintained as part of the peentaecords associated with the project.

Figure 2-6. Memory map for the Arcom board

- OXFFFFFFFF
e 0x51000000
Flash Memory
16MB
[U sed} 0X50000000
o 0x44000000
PXA2SS
Pel;'ph;:als 0x40000000
o 0x0800030F
SMSC Ethernet
Controll
oo 0x08000300
Unused
0x04000000
SDRAM
64 MB
(64 M) 0x00000000

For each new board, you should create a C-languagger file that describes its most important
features. This file provides an abstract interfacthe hardware. In effect, it allows you to reti@the
various devices on the board by name rather thaadtyess. This has the added benefit of making your
application software more portable. If the memopnever changes—for example, if the 64 MB of
RAM is moved—you need only change the affectedslioiethe board-specific header file and recompile
your application.

Abstracting the hardware into a file (for smalleojpcts) or a directory of files (for larger projgkalso
allows you to reuse certain portions of your coslg@ move from project to project. Because the
hardware engineer will likely reuse componentsaw mesigns, you too can reuse drivers for these
components in these new designs.

As this chapter progresses, we will show you howeréate a header file for the Arcom board; the
following code is the first section of this filehik part of the header file describes the memony:ma

I'n nnnnnnnnnnn *% *k% * *hkkkkkkkkhkkkhkkkkk
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Memory Map

Base Address Size Description

0x00000000 64M SDRAM

0x08000300 N/A Ethernet control ler
0x50000000 16M Flash

*
*
*
*
*
*
*
*

khkkkkkkkkkkkkkhkkkhhkkkhkkkhhkkkhkkkhhhkkhkxxxx*xx kkkk¥k * xx/

#define SDRAM_BASE (0x00000000)
#define ETHERNET_BASE (0x08000300)
#define FLASH_BASE (0x50000000)

2.4. Learn How to Communicate

Now that you know the names and addresses of theonyeand peripherals attached to the processor, it
is time to learn how to communicate with the peeigalts. There are two basic communication
techniques: polling and interrupts. In either calse processor usually issues some sort of comneand
the device by writing—by way of the memory or I/@ase—particular data values to particular
addresses within the device, and then waits fodéwce to complete the assigned task. For example,
the processor might ask a timer to count down fig@®0 to 0. Once the countdown begins, the
processor is interested in just one thing: is itmett finished counting yet?

If polling is used, the processor repeatedly chéalsee whether the task has been completed. Fhis i
analogous to the small child who repeatedly aske We there yet?" throughout a long trip. Like the
child, the processor spends a large amount of wikemuseful time asking the question and getting a
negative response. To implement polling in softywgoel need only create a loop that reads the status
register of the device in question. Here is an gpdam

do
/* Play games, read, listen to music, etc. */
/* Poll to see if we're there yet. */
status = areWeThereYet( );

} while (status == NO);

The second communication technique uses interrAptéterrupt is an asynchronous electrical signal
from a peripheral to the processor. Interruptstzagenerated from peripherals external or intemal
the processor, as well as by software.

When interrupts are used, the processor issues aadsrio the peripheral exactly as before, but then
waits for an interrupt to signal completion of #mesigned work. While the processor is waiting fer t
interrupt to arrive, it is free to continue working other things. When the interrupt signal is dese

the processor finishes its current instruction,derarily sets aside its current work, and execates
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small piece of software called the interrupt sexvigutine (ISR) or interrupt handler. When the ISR
completes, the processor returns to the work tlaatinterrupted.

Of course, this isn't all automatic. The programmaest write the ISR himself and "install" and emrabl
it so that it will be executed when the relevaméirupt occurs. The first few times you do thisyill be
a significant challenge. But, even so, the usateiriupts generally decreases the complexity olsone
overall code by giving it a better structure. Ratian device polling being embedded within an
unrelated part of the program, the two pieces dea@main appropriately separate.

On the whole, interrupts are a much more efficies# of the processor than polling. The processor is
able to use a larger percentage of its waiting ferdorming useful work. However, there is some
overhead associated with each interrupt. It takgsoa bit of time—relative to the length of time it
takes to execute an opcode—to put aside the prarcessirrent work and transfer control to the
interrupt service routine. Many of the processatgsters must be saved in memory.

In practice, both interrupts and polling are usedjdiently. Interrupts are used when efficiency is
paramount or when multiple devices must be monitsimultaneously. Polling is typically used when
the processor must respond to some event morelgdinaa is possible using interrupts or when large
amounts of data are expected to arrive at particadarvals, such as during real-time data acqdarsit
We will take a closer look at interrupts@hapter 8

2.5. Getting to Know the Processor

If you haven't worked with the processor on youarddoefore, you should take some time to get
familiar with it now. This shouldn't take very loiifgyou do all of your programming in a high-level
language such as C. You need to dig in and finchowt particular peripherals of the processor work.
Generally, to the user of a high-level languagestpoocessors look and act pretty much the same.
However, if you'll be doing any assembly languageypmming, you need to familiarize yourself with
the processor's register architecture and instnicét.

Everything you need to know about the processobesiound in the databooks provided by the
manufacturer. If you don't have a databook or @ogner's guide for your processor already, you
should obtain one immediately. If you are goindp¢oa successful embedded systems programmer, you
must be able to read databooks and get somethinaf them. Processor databooks are usually well
written—as databooks go—so they are an ideal glastart. Begin by flipping through the databook

and noting sections that are most relevant toaskstat hand. Then go back and begin reading the
processor overview section.

Things you'll want to learn about the processomfits databook are:

« What address does the processor jump to afteet?res

« What is the state of the processor's registerparigherals at reset?

« What is the proper sequence to program a peripbeegjisters?

« Where should the interrupt vector table be locaf®dés it have to be located at a specific
address in memory? If not, how does the processow kvhere to find it?

- What is the format of the interrupt vector table? just a table of pointers to ISR functions?
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« Are there any special interrupts—sometimes caligplst—that are generated within the
processor itself? Must an ISR be written to haedieh of these?

« How are interrupts enabled and disabled? Globailtyiadividually?

- How are interrupts acknowledged or cleared?

In addition to the processor databook, the Intecoatains a wealth of information for embedded
software developers. The manufacturer's site igatglace to start. In addition, a search forréiqdar
processor can yield oodles of useful informatiamfrfellow developers, including code snippets givin
you exact details on how to write your softwareve3al newsgroups are also targeted toward embedded
software development and toward specific processors

u You need to take care to fully understand any Baemissues of the software y
— find on the Internet should you decide to use soraedse's code. You might haye
to get your company's legal department involvedrder to avoid any problems.

Another useful tool for understanding the processardevelopment board. Once the processor is
selected, you can search for your options for alidgvnent board. You need to consider the periphteral
and software tools included on the developmentddasr example, if your application is going to
include an Ethernet port, it would be a good idesdlect a development board that also includes an
Ethernet port. There is typically example softwiaduded with the development board as well. If the
project uses a processor that you have not workédbefore, the example software can get you up the
learning curve a lot faster. The development bealidassist you in getting a jump-start on the
embedded software development.

Another benefit of a development board is thabifi are seeing some oddities related to your prsject
hardware, you can always go back to the developbeantd (where the hardware should be stable) and
run some tests to see whether the problem is spéxithe new design.

2.5.1. Processors in General

Many of the most common processors are membeesfiés of related devices. In some cases, the
members of such a processor family represent palatsy an evolutionary path. The most obvious
example is Intel's 80x86 family, which spans frdra briginal 8086 to the Pentium 4 and beyond. In
fact, the 80x86 family has been so successfulitits spawned an entire industry of imitators.

As it is used in this book, the term processorrefe any of three types of devices known as
microprocessors, microcontrollers, and digital sigsrocessors. The name microprocessor is usually
reserved for a chip that contains a powerful cépir@cessing unit (CPU) that has not been designed
with any particular computation in mind. These sh#pe usually the foundation of personal computers
and high-end workstations, although microprocesamsised in embedded systems as well. Other
widely known microprocessors are members of Frée'std 68K—found in older Macintosh
computers—and the ubiquitous 80x86 families.

S
I This is Motorola's new semiconductor division.
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A microcontroller is very much like a microprocessexcept that it has been designed specifically fo
use in embedded systems. Microcontrollers typidaltjude a CPU, memory (a small amount of RAM,
ROM, or both), and other peripherals in the sanegirated circuit. If you purchase all of these gemn

a single chip, it is possible to reduce the cogtroémbedded system substantially. Among the most
popular microcontrollers are the 8051 and its miamtators and the 68HCxx series. It is also common
to find microcontroller versions of popular micropessors. For example, Intel's 386 EX is a
microcontroller version of the 80386 microprocessor

The final type of processor is a digital signalgassor, or DSP. The CPU within a DSP is specially
designed to perform discrete-time signal processaigulations—Iike those required for audio and
video communications—extremely fast. Because D@Rgperform these types of calculations much
faster than other processors, they offer a powddwl-cost microprocessor alternative for desigrérs
cell phones and other telecommunications and mettimequipment. Analog Devices, Freescale, and
Tl are each vendors of common DSP devices.

2.5.2. The PXA255 XScale Processor

The processor on the Arcom board is a PXA255 ti@drporates the XScale core. XScale is based on
the ARM Version 5TE architecture. In order to fiogt more about the ARM processor, a great book is
David Seal's ARM Architecture Reference Manual (&dd-Wesley); this book is commonly referred
to as the "ARM ARM."

In addition to the CPU, the PXA255 contains anrinfgt control unit, a memory controller, several
general-purpose 1/O pins, four timer/counters,’@nHus interface unit, four serial ports, 16 direct
memory access (DMA) channels, a memory contrdhlar supports several memory types including
DRAM, a USB client, an LCD controller, two pulsedth modulators, a real-time clock, a watchdog
timer unit, and a power management unit. Thesadydrdware devices are located within the same chip
and are referred to as on-chip peripherals. The {SRlble to communicate with and control the orpchi
peripherals directly, via internal buses.

Although the on-chip peripherals are distinct haadndevices, they act like little extensions of the
PXA255 CPU. The software can control them by regdind writing to the peripheral specific registers.
The control and status registers for each of thelop peripherals are located at fixed addresses in
memory space. The exact addresses of each regastdre found in the PXA255 Processor Developer's
Manual. To isolate these details from your appiccasoftware and to aid in the readability of your
software, it is good practice to include the adsiessof any registers you will be using in the heéite

for your board. You can see from the following ced@pet that it is more difficult to understandawh

is going on when addresses are used directly:

if (oLedEnable == TRUE)

*((uint32_t *)0Ox40E00018) = 0x00400000;
}
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Although comments could clarify what is going orthe above code, it is better to use more deseepti
names in your software that will make your codé-detumenting, but do add comments as well to aid
in understanding.

In addition to a header file describing the boaiekgures, a C-language header file that desctitges
processor's registers should also be created. Amghe of descriptive names for some of the register
in the PXA255 processor follows. It is also helpfuldefine descriptive names for particular bitsiin
register if they will be addressed individuaffy.

8] We will discuss the use of the keywarghatile  in Chapter 7

/************************************************** *kkkkk
* PXA255 XScale ARM Processor On-Chip Peripherals
kkkkkkkkkkkkhkkkkkhkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkx ******/

[* Timer Registers */

#define TIMER_O0_MATCH_REG (*((uint32_t vo latile *)0x40A00000))
#define TIMER_1_MATCH_REG (*((uint32_t vo latile *)0x40A00004))
#define TIMER_2_MATCH_REG (*((uint32_t vo latile *)0x40A00008))
#define TIMER_3_MATCH_REG (*((uint32_t vo latile *)0Ox40A0000C))
#define TIMER_COUNT_REG (*((uint32_t vo latile *)0x40A00010))
#define TIMER_STATUS_REG (*((uint32_t vo latile *)0x40A00014))
#define TIMER_INT_ENABLE_REG (*((uint32_t vo latile *)0x40A0001C))
/* Timer Interrupt Enable Register Bit Descriptions */

#define TIMER_O_INTEN (0x01)

#define TIMER_1_INTEN (0x02)

#define TIMER_2_INTEN (0x04)

#define TIMER_3_INTEN (0x08)

/* Timer Status Register Bit Descriptions */

#define TIMER_O_MATCH (0x01)

#define TIMER_1_MATCH (0x02)

#define TIMER_2_MATCH (0x04)

#define TIMER_3_MATCH (0x08)

[* Interrupt Controller Registers */

#define INTERRUPT_PENDING_REG (*((uint32_t vo latile *)0x40D00000))
#define INTERRUPT_ENABLE_REG (*((uint32_t vo latile *)0x40D00004))
#define INTERRUPT_TYPE_REG (*((uint32_t vo latile *)0x40D00008))
/* Interrupt Enable Register Bit Descriptions */

#define GPIO_0_ENABLE (0x00000100)

#define UART_ENABLE (0x00400000)

#define TIMER_O_ENABLE (0x04000000)

#define TIMER_1_ENABLE (0x08000000)

#define TIMER_2_ENABLE (0x10000000)

#define TIMER_3 ENABLE (0x20000000)

/* General Purpose 1/0 (GPIO) Registers */

#define GPIO_0_LEVEL REG (*((uint32_t vo latile *)0x40E00000))
#define GPIO_1_LEVEL_REG (*((uint32_t vo latile *)0x40E00004))
#define GPIO_2 LEVEL REG (*((uint32_t vo latile *)0x40E00008))
#define GPIO_0_DIRECTION_REG (*((uint32_t vo latile *)0Ox40E0000C))

Page 44



Programming Embedded Systems Second Edition

#define GPIO_1 DIRECTION_REG (*((uint32_t vo latile *)Ox40E00010))
#define GPIO_2_ DIRECTION_REG (*((uint32_t vo latile *)0Ox40E00014))
#define GPIO_0_SET_REG (*((uint32_t vo latile *)Ox40E00018))
#define GPIO_1 SET_REG (*((uint32_t vo latile *)0Ox40E0001C))
#define GPIO_2_SET_REG (*((uint32_t vo latile *)0x40E00020))
#define GPIO_0_CLEAR_REG (*((uint32_t vo latile *)0Ox40E00024))
#define GPIO_1 CLEAR_REG (*((uint32_t vo latile *)0x40E00028))
#define GPIO_2 CLEAR_REG (*((uint32_t vo latile *)0x40E0002C))
#define GPIO_0_FUNC_LO_REG (*((uint32_t vo latile *)0x40E00054))
#define GPIO_0_FUNC_HI_REG (*((uint32_t vo latile *)0x40E00058))

Let's take a look at the earlier code snippet amitb use a register definition from the exampledee
file:

if (bLedEnable == TRUE)

GPIO_0_SET_REG = 0x00400000;
}

This code is a lot easier to read and understamoh without a comment. Defining registers in a lezad
file, as we have shown in the preceding code, @swents you or another team member from running
to the databook every other minute to look up @stegaddress.

2.6. Study the External Peripherals

At this point, you've studied every aspect of tee/ihardware except the external peripherals. These
the hardware devices that reside outside the psocehip and communicate with it by way of intetsup
and I/O or memory-mapped registers.

Begin by making a list of the external peripher&8lspending on your application, this list mightlude
LCD or keyboard controllers, analog-to-digital (A/Eonverters, network interface chips, or custom
application-specific integrated circuits (ASICS).the case of the Arcom board, the list contaiss ju
two items: the SMSC Ethernet controller and thalberport.

You should obtain a copy of the user's manual tastheeet for each device on your list. At this early
stage of the project, your goal in reading thesaideents is to understand the basic functions of the
device. What does the device do? What registeras@e to issue commands and receive the results?
What do the various bits and larger fields wittirde registers mean? When, if ever, does the device
generate interrupts? How are interrupts acknowleéageleared at the device?

When you are designing the embedded software, lyould try to break the program down along device
lines. Itis usually a good idea to associate an&oe module called a device driver with each ef th
external peripherals. A device driver is nothingrenthan a collection of software routines that oaint

the operation of a specific peripheral and isallageapplication software from the details of that
particular hardware device. We'll have a lot maredy about device drivers later on.
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2.7. Initialize the Hardware

The final step in getting to know your new hardwigreo write some initialization software. Thisyisur
best opportunity to develop a close working reladiup with the hardware, especially if you will be
developing the remainder of the software in a Heylel language.

During hardware initialization, it may be impossildb avoid using assembly language. However, after
completing this step, you will be ready to begiritiwg small programs!!

I 1n order to make the example@hapter 3 little easier to understand, we didn't show afrthe
initialization code there. However, it is necesdarget the hardware initialization code workinddre
you can write even simple programs such as BlinkiB®. The Arcom board includes a debug monitor
that handles all of the assembly language hardim#raization.

If you are one of the first software engineers tokwvith a new board—
especially a prototype—the hardware might not wawladvertised. All processof-
J+: based boards require some amount of software ¢gestioonfirm the correctness
of the hardware design and the proper functioningevarious peripherals. Thi
puts you in an awkward position when somethingotsworking properly. How
do you know whether the hardware or your softwareausing the problem? If
you happen to be good with hardware or have adoessimulator, you might be
able to construct some experiments to answer thestgpn. Otherwise, you should
probably ask a hardware engineer to join you indbefor a joint debugging
session.

The hardware initialization should be executed teetbe startup code describeddhapter 4The code
described there assumes that the hardware hadylean initialized and concerns itself only with
creating a proper runtime environment for high-ldaeguage programgigure 2-7provides an
overview of the entire initialization process, fr@mocessor reset through hardware initializatioth @n
startup code tenain .

Figure 2-7. The hardware and software initializatioprocess
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reset; 1
; Reset Code
; (in assembly)

jmp hw_init —
: Hardware
:Initialization

; (in assembly)

JITI[] Sm{fﬂﬁ 3
‘4 Sfﬂrfﬂp:

; Startup Code
; (in assembly)

call main

main()

[*The (/C++ program starts here. */

The first stage of the initialization process is thset code. This is a small piece of assembgukage
(usually only two or three instructions) that thregessor executes immediately after it is poweredro
reset. The sole purpose of this code is to tramsfetrol to the hardware initialization routine.erfirst
instruction of the reset code must be placed aeaific location in memory, usually called the rtese
address or reset vector, which is specified imptioeessor databook. The reset address for the PXA25
is 0x00000000.

Most of the actual hardware initialization takeagd in the second stage. At this point, we need to
inform the processor about its environment. Thial$® a good place to initialize the interrupt cotér
and other critical peripherals. Less critical haadevdevices can be initialized when the associated
device driver is started, usually from withiin .

The PXA255 has boot select pins that allow yoypecgy the type and width of the memory device
from which the processor attempts to execute tii@limstructions. The memory device that the
processor boots from typically contains the codertmram several internal registers of the PXA255
that must be programmed before any useful workbeatione with the processor. These internal
registers are responsible for setting up the memay and are part of the processor's internal mgmor
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controller. By programming the memory interface faguration registers, you are essentially waking up
each of the memory and peripheral devices that@meected to the processor.

The PXA255 contains six chip-selects for interfgdia various types of external memory. These chip-
selects are active for accesses in particular mgnamges. Each chip-select is associated withgesin
"chip enable" wire that runs from the processmdme other chip. In many systems, the circuitrggdo
this is external to the processor. The associdi&iween particular chip-selects and hardware dsvice
must be established by the hardware designer.cdllneed to do is get a list of chip-select settings
her and load those settings into the memory cordigan registers.

Upon reset, the PXA255 jumps to the address OxQD@@Avhich activates chip select 0 (the nCSJ[0]
pin). This is the processor's "fetal position," @ndiplies that this chip-select is used to acsEsre
type of nonvolatile memory, such as flash in theodn board's case. Since there are no other chip-
selects configured at this point, the software nalst not require the use of any RAM. This includes
making a subroutine call, as this will require asc® the stack (discussed in a moment), whicls line
RAM,; function calls are verboten. Until the RAMastive and the stack pointer initialized, your code
must be linear.

The hardware initialization routinew_init , should start by initializing the memory interface
configuration registers to inform the processorutltbe other memory and peripheral devices that are
installed on the board. By the time this task isiptete, the entire range of ROM and RAM addresses
will be enabled, so the remainder of your softwaae be located at any convenient address in either
ROM or RAM.

The third initialization stage contains the startople. Its job is to prepare the way for code emitin a
high-level language. One of the important taskhisf code is to set up the stack for the systems. Th
stack is the area of RAM that the processor usefporary storage during execution. The stack
operates on the last-in-first-out (LIFO) principhewhich items of data are pushed onto and popjied o
of the stack: typically, local variables (a.k.at@unatic variables) and return addresses from fancti
calls during program execution. After initializitige stack, the startup code catlsin . From that point
forward, all of your other software can be writtera high-level language.

Hopefully, you are starting to understand how endieeldsoftware gets from processor reset to your
main program. Admittedly, the very first time yowy to pull all of these components (reset code,
hardware initialization, high-level language stpraode, and application) together on a new bohetet
will be problems. So expect to spend some time gging each of them. We'll take a look at debugging

in Chapter 5

With a new hardware platform, some hardware probleray pop up as well. These might lead to a
problem where the processor simply doesn't do amytlsometimes the problem is a basic issue that
was overlooked. Some of the basic things to do are:

« Make sure the processor and ROM are receivingribygep voltage required to operate the parts.
« Check to make sure the clock signal is running. gifleeessor won't do anything without a clock.
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« Verify that the processor is coming out of resefpgrly. You can check the address a processor
is fetching using a logic analyzer. This will valié that the processor is trying to fetch the first
instruction from the location you expect.

« Make sure that a watchdog timer isn't resettingotioeessor.

- Ensure that input pins on the processor are pailgid or low. This is particularly important for
interrupt pins. An input pin in an unknown statertenonly called a floating pin) can wreak all
sorts of havoc for a processor.

The hardware engineer might handle these tasksfarbut don't be afraid to jump right in and look
over the schematics yourself. Or better yet, seethrdn you can sit in the lab with the hardware e
while he performs his initial checkout of the baard

Expect that the initial hardware bring-up will teethardest part of the project. You will soon e t
once you have a basic program operating that yodatbback on, the work just gets easier and easie
or at least more similar to other types of compptegramming.

Chapter 3. Your First Embedded Program

ACHTUNG! Das machine is nicht fur gefingerpoken amtlengrabben. Ist easy schnappen der
springenwerk, blowenfusen und corkenpoppen mizespsparken. Ist nicht fur gewerken by das
dummkopfen. Das rubbernecken sightseeren keepe@s radas pockets. Relaxen und vatch das
blinkenlights!

—Electronics Laboratory Sign

In this chapter, we'll dive right into embeddedgraonming by way of an example. Our example is
similar in spirit to the "Hello, World!" example @md in the beginning of most other programming
books. We'll discuss why we picked this particydesgram and point out the parts of it that are
dependent on the target hardware. This chapteaic@nonly the source code for the program. We'll
discuss how to create the executable and how t@lctun it in the chapters that follow.

3.1. Hello, World!

It seems that every programming book ever writtegifs with the same example—a program that
prints "Hello, World!" on the user's screen. An mged example such as this might seem a bit boring.
Among other things, the example helps readers uadsess the ease or difficulty with which simple
programs can be written in the programming envireminat hand. In that sense, "Hello, World!" serves
as a useful benchmark for users of programminguages and computer platforms.

Based on the "Hello, World!" benchmark, embeddeddesys are among the most challenging computer
platforms for programmers to work with. In some eahbed systems, it might even be impossible to
implement the "Hello, World!" program. And in thosgstems that are capable of supporting it, the
printing of text strings is usually more of an eautp than a beginning.

A principal assumption of the "Hello, World!" exataps that there is some sort of output device on
which strings of characters can be printed. A w@rdow on the user's monitor often serves that
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purpose. But most embedded systems lack a momitmmradogous output device. And those that do have
one typically require a special piece of embedagtivare, called a display driver, to be implemented
first—a rather challenging way to begin one's endieedorogramming career.

It would be much better to begin with a small, Basnplemented, and highly portable embedded
program in which there is little room for progranmgimistakes. After all, the reason our book-writing
counterparts continue to use thello, World! example is that implementing it is a no-braindrisT
eliminates one of the variables in the case trat#er's program doesn't work correctly the firset it
isn't a bug in his code; rather, it is a problerthwine development tools or process he used tdectea
executable program.

Embedded programmers must be self-reliant. They alwsys begin each new project with the
assumption that nothing works—that all they cag o#l is the basic syntax of their programming
language. Even the standard library routines mmgihbe available to them. These are the auxiliary
functions—such agrintf  andmemcpy—that most other programmers take for grantedadm, fibrary
routines are often as much a part of the C-langstagelard as the basic syntax. However, the library
part of the standard is more difficult to suppanass all possible computing platforms and is
occasionally ignored by the makers of compilerseimbedded systems.

So, you won't find an actual "Hello, World!" progman this chapter. Instead, we'll write the simplés
language program we can, without assuming you bpeeialized hardware (which would require a
device driver) or any library with functions suchpantf . As we progress through the book, we will
gradually add standard library routines and thevedent of a character output device to our repesto
By that time, you'll be well on your way to becomian expert in the field of embedded systems
programming.

3.2. The Blinking LED Program

Almost every embedded system that we've encounteredr respective careers has had at least one
LED that could be controlled by software. If thedware designer plans to leave the LED out of the
circuit, lobby hard for getting one attached toeaeral-purpose 1/0 (GPIO) pin. As we will see later
this might be the most valuable debugging tool gave.

A popular substitute for the "Hello, World!" prognas one that blinks an LED at a rate of 1 Hz (one
complete on-off cycle per secontl). Typically, the code required to turn an LED on afids limited

to a few lines of code, so there is very littlemofor programming errors to occur. And because atmo
all embedded systems have LEDs, the underlyingequiris extremely portable.

[T Of course, the rate of blink is completely arbigraBut one of the good things about the 1 Hz imte
that it's easy to confirm with a stopwatch. Simgtigrt the stopwatch, count off a number of blirgtep
the stopwatch, and see whether the number of elagesmnds is the same as the the number of blinks
you counted. Need greater accuracy? Simply codmhofe blinks.

Ouir first step is to learn how to control the gré&D we want to toggle. On the Arcom board, the

green LED is located on the add-on module showkidare 3-1 The green LED is labeled "LED2" on
the add-on module. The Arcom board's VIPER-Litehécal Manual and the VIPER-I/O Technical
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Manual describe how the add-on module's LEDs aneetted to the processor. The schematics can
also be used to trace the connection from the L&EKk Ibo the processor, which is typically the method
you need to use once you have your own hardware.

Figure 3-1. Arcom board add-on module containingelgreen LED

e[ COOOO00C o
+5Y QQDDDQO +8Y

#5¥ 1 13 18 17 GND D1 03 08 07
#5Y 10 12 14 16 00 TD 02 04 08

LED?2 is controlled by the signal OUT2, as descrilrethe LEDs section in the Arcom board's VIPER-
I/O Technical Manual. This text also informs ustttine signals to the LEDs are inverted; therefore,
when the output is high, the LEDs are off, and wieesa. The general-purpose 1/O section of the RPE
Technical Manual shows that the OUT2 signal is mlatd by the processor's GPIO pin 22. Therefore,
we will need to be able to set GPIO pin 22 altezlyatigh and low to get our blinker program to
function properly.

The superstructure of the Blinking LED programhswn next. This part of the program is hardware-
independent. However, it relies on the hardwaresddpnt functiongdinit , ledToggle , and

delay_ms to initialize the GPIO pin controlling the LED, &ihge the state of the LED, and handle the
timing, respectively. These functions are describatie following sections, where we'll really get
sense of what it's like to do embedded systemsanoming.
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#include "led.h"

/ *k%k *kk *k% *k% *k%k

*

* Function: main

*

* Description: Blink the green LED once a second.

*

* Notes:

*

* Returns:  This routine contains an infinite | oop.

*

kkkkkkkkkkkkhkkkkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkx *kk * xx/
int main(void)

{

[* Configure the green LED control pin. */
ledInit( );

while (1)

{
/* Change the state of the green LED. */

ledToggle( );

/* Pause for 500 milliseconds. */
delay_ms(500);

}

return O;

3.2.1. The ledInit Function

Before we start to use 2 particular peripheralfivge need to understand the hardware used to @ontr
that specific peripherai. ! Because the LED we want to blink is connectedn® af the PXA255
processor's 85 bidirectional GPIO pins, we nedddas on those. Often, as is the case with the
PXA255 processor, I/0 pins of embedded processars multiple functions. This allows the same pins
either to be used as user-controllable 1/0 or fpsut particular peripheral functionality withineth
processor. Configuration registers are used tasktev the application will use each specific gon.

i All of the documentation for the Arcom board isitained on the VIPER-Lite Development Kit CD-
ROM. This includes datasheets and user's manualkd@omponents on the board.

On the PXA255, each port pin can be configuredif® by the internal peripheral (called an altermate
function pin) or by the user (called a general-pggopin). For each GPIO pin, there are severalit32-b
registers. These registers allow for configuragad control of each GPIO pin. The description ef th
registers for the GPIO port that contains the pirtiie green LED is shown in Table 3-1. These
registers are located within the PXA255 chip.
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Table 3-1. PXA255 GPIO registers

Register

name Type Address Name Purpose
GPIO Pin- . :
Reflects the state of each GPIO pin.0 = Pin state
GPLRO Read-only  0x40E000C %i;?lster is low.1 = Pin state is high.
GPIO Pin Controls whether a pin is an input or output.(| =
GPDRO Read/write0x40E0000C Direction Pin is configured as an input.1 = Pin is
Register configured as an output.
GPIO Pin For pins configured as output, the pin is set high
GPSRO | Write-onlyOx40E00018 Output Set | 2 Writing a 1 to the appropriate bit in this
! Reaister register.0 = Pin is unaffected.1 = If configured
9 as output, pin level is set high.
GPIO Pin For pins configured as output, the pin is set low
GPCRO | Write-only 0x40E00024 Output Clear| 2y Writing a 1 to the appropriate bit in this
Reaister register.0 = Pin is unaffected.1 = If configured
9 as output, pin level is set low.
GPIO Configures GPIO pins for general 1/O or
Alternate alternate functionality.00 = GPIO pin is used as
GAFRO_U | Read/writeOx40E00058 Function | 9&neral-purpose l/Q. 01 = GPIO pin is used for
- I Reqister alternate function 1. 10 = GPIO pin is used for
(High) alternate function 2. 11 = GPIO pin is used for

alternate function 3.

The PXA255 Processor Developer's Manual statedhbatonfiguration of the GPIO pins for the LEDs
are controlled by bits 20 (red), 21 (yellow), arl(8reen) in the 32-bit GPDRO registErgure 3-2

shows the location of the bit for GPIO pin 22 ie tBPDRO register; this bit configures the direcabn
GPIO pin 22 that controls the green LED.

Bit
GPDRO Register
(0x40E0000()

3

Figure 3-2. PXA255 processor GPDRO register

28 27 26

5 4 2

18 17 16 15 14 13 12

Green LED GPIOQ Pin
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The PXA255 peripheral control registers are locatetiemory space, as shownRmgure 2-6in
Chapter 2The addresses of these registers are given ile Bab. Because the registers are memory-
mapped, they are easily accessed in C in the saye tlvat any memory location is read or written.

>

You may notice as you read through the PXA255 RsmeDeveloper's Manual

e | that certain registers contain bits that are dedeghas reserved. This is typical i

" 44 many registers within a processor. The processouaiavill state how these bits

should be read or written. In the case of the PX6A@focessor, the manual statets

that reserved bits must be written as zeros amaréghwhen read. It is important
that you do not use for other purposes any bitslémbas reserved.

¥
-.
L
L

I/O Space Register Access

If the GPIO pin registers are located in 1/O spalsey can be accessed only by using

assembly language. The 80x86 assembly languagadtiehs to access I/O space areand
out . The C language has no built-in support for tregserations. Wrapper C functions called
inport andoutport are part of some 80x86-specific standard libragkages.

Most registers within a CPU have a default confidion after reset. This means that before we dee ab
to control the output on any I/O pins, we need ekensure the pin is configured properly. After tese
all GPIO pins in the PXA255 are configured as isput addition, they function as general-purpo€e 1/
pins rather than alternate-function pins.

B Although the GPIO pins that control the LEDs arafigured as general-purpose
— I/O pins upon reset, we need to ensure that ther gtbftware that is running did
not change the functionality of these GPIO pins.

It is a good practice always to initialize hardwgoel are going to use, even if you
think the default behavior is fine.

In our case, we need to configure GPIO pin 22 asufiput via bit 22 in the GPDRO register.
Furthermore, the GPIO pin that controls the greED Imust be set to function as a general-purpose 1/0
pin via the same bit in the GAFRO_U register.

The bitmask for the GPIO pin that controls the greED on the Arcom board is defined in our
program as:

#define LED_GREEN (0x00400000)

A fundamental technique used by tbdinit  routine is a read-modify-write of a hardware regis
First, read the contents of the register, then figatle bit that controls the LED, and finally writlee
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new value back into the register location. The dodedinit

performs two read-modify-write

operations—one on the register GAFRO_U and onePDRY, in that order. These operations are done
by using the C language- and|= operators, respectively; the effectkad=y is the same as that ot
x &y. We will take a closer look at these operatorslaibhchanipulation irChapter 7

Theledinit  function configures the PXA255 processor on theofr board to control the green LED
located on the add-on module. In the following coael may notice that we clear the GPIO pin in the
GPCRO register to ensure that the output voltagdeiGPI1O pin is first set to zero, as suggestaten

developer's manual.

#define PIN22_FUNC_GENERAL (OXFFFFCFFF)

/ *k%k *kk *k% *k%

*

* Function: ledInit

*

* Description: Initialize the GPIO pin that contro

*

* Notes: This function is specific to the Ar

*
* Returns:  None.
*

khkkkkhkkkhkhkkkhhkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxhhhx

void ledInit(void)

{
/* Turn the GPIO pin voltage off, which will li
* be done before the pins are configured. */
GPIO_0_CLEAR_REG = LED_GREEN;

/* Make sure the LED control pin is set to perf
* purpose functions. RedBoot may have changed
GPIO_0_FUNC_HI_REG &= PIN22_FUNC_GENERAL;

/* Set the LED control pin to operate as output
GPIO_0_DIRECTION_REG |= LED_GREEN;

3.2.2. The ledToggle Function

Is the LED.

com board.

KKk * xx/

ght the LED. This should

orm general
the pin's operation. */

X

This routine runs within an infinite loop and ispensible for changing the state of the LED. Tlagest

of this LED is controlled by writing to either tl&&PI1O Pin Output Set Register (GPSR) or the GPIO Pin
Output Clear Register (GPCR). The GPSRO registewalus to set the level of the LED control GP1O
pin high; the GPCRO register allows us to set ¢vellof the LED control GPIO pin low. Writing totbi

22 of these registers changes the voltage on tleene pin and, thus, the state of the green LED.
Because the GPIO pin to the LED is inverted, whe@d of the GPSRO register is set, the green LED i
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off, whereas when bit 22 of the GPCRO registeetsthe green LED is on. The state of the LED is
determined by the GPIO Pin Level Register (GPLR).

As described earlier, the PXA255 processor hasragparite-only registers for setting (GPSRO0) and
clearing (GPCRO) the bit that controls the GPIQ pimerefore, a read-modify-write cannot be used to
toggle the state of the LED. The actual algorithfrtheledToggle routine is straightforward: determine
the current state for the LED of interest and winte the GPIO register the bit that controls th&D in
order to set the new state of the LED.

/ *k%k *kk *k% *k% *k%k

*

* Function: ledToggle

*

* Description: Toggle the state of one LED.
*

* Notes: This function is specific to the Ar com board.

*

* Returns:  None.

*

khkkkkkkkkhhkkkhkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx *kk * * x/

void ledToggle(void)
{

[* Check the current state of the LED control p in. Then change the
* state accordingly. */
if (GPIO_O0_LEVEL_REG & LED_GREEN)
GPIO_0_CLEAR_REG = LED_GREEN;
else
GPIO_0_SET_REG = LED_GREEN,;

3.2.3. The delay_ms Function

We also need to implement a 500 ms delay betwe&htbBgles. We do this by busy-waiting within the
following delay_ms routine. This routine accepts the length of truested delay, in milliseconds, as
its only parameter. It then multiplies that numbegrthe constantYCLES_PER_M$0 obtain the total
number of while-loop iterations that are requinedider to delay for the requested time period:

/* Number of decrement-and-test cycles. */
#tdefine CYCLES_PER_MS (9000)

/ *k%k *kk *k% *k% *k%k

*

* Function: delay_ms

*

* Description: Busy-wait for the requested number of milliseconds.

*

* Notes: The number of decrement-and-test cy cles per millisecond
* was determined through trial and er ror. This value is

* dependent upon the processor type, speed, compiler, and
*

the level of optimization.
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*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void delay_ms(int milliseconds)
long volatile cycles = (milliseconds * CYCLES_P ER_MS);

while (cycles = 0)
cycles--;

The hardware-specific constalNCLES_PER_Ms$epresents the number of times the processoreaian g
through the while loop in a millisecond. To detammthis number, we used trial and error. We wil se
later how to use a hardware counter to achievetitting accuracy.

The four functionsnain , ledinit  , ledToggle , anddelay_ms do the whole job of the Blinking LED
program. Of course, we still need to talk about howuild and execute this program. We'll examine
those topics in the next two chapters. But firs, lvave a little something to say about infinitepeand
their role in embedded systems.

3.3. The Role of the Infinite Loop

One of the most fundamental differences betweegrpros developed for embedded systems and those
written for other computer platforms is that thebexhded programs almost always have an infinite.loop
Typically, this loop surrounds a significant pafrtiee program's functionality, as it does in theBing

LED program. The infinite loop is necessary becahseembedded software's job is never done. It is
intended to be run until either the world comearniaend or the board is reset, whichever happests fir

In addition, most embedded systems run only oneepié¢ software. Although hardware is important,
the system is not a digital watch or a cellularmhor a microwave oven without that software. & th
software stops running, the hardware is renderelbss. So the functional parts of an embedded
program are almost always surrounded by an infloie that ensures that they will run forever.

If we had forgotten the infinite loop in the Blimig LED program, the LED would have simply changed
state once.

Chapter 4. Compiling, Linking, and Locating

| consider that the golden rule requires that ke a program | must share it with other peopleovike

it. Software sellers want to divide the users aoidqgtier them, making each user agree not to shate wi
others. | refuse to break solidarity with other tssm this way. | cannot in good conscience sign a
nondisclosure agreement or a software license agegg. So that | can continue to use computers
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without dishonor, | have decided to put togethsuéicient body of free software so that | willddde
to get along without any software that is not free.

—Richard Stallman, Founder of the GNU Project TMUGManifesto

In this chapter, we'll examine the steps involvegreparing your software for execution on an
embedded system. We'll also discuss the assodaterlopment tools and see how to build the Blinking
LED program shown i€hapter 3

But before we get started, we want to make it dlear embedded systems programming is not
substantially different from the programming youdane before. The only thing that has really chdnge
is that you need to have an understanding of tigethardware platform. Furthermore, each target
hardware platform is unique—for example, the metttodcommunicating over a serial interface can
vary from processor to processor and from platftoplatform. Unfortunately, this uniqueness among
hardware platforms leads to a lot of additionatwafe complexity, and it's also the reason yoe'#ah

to be more aware of the software build process #van before.

We focus on the use of open source software tadlsis edition of the book. It's wonderful that
software developers have powerful operating systamsools that are totally free and are availéle
exploring and altering. Open source solutions &rg popular and provide tough competition for their
commercial counterparts.

4.1. The Build Process

When build tools run on the same system as theranothey produce, they can make a lot of
assumptions about the system. This is typicallythetcase in embedded software development, where
the build tools run on a host computer that diffeosn the target hardware platform. There are afot
things that software development tools can do aatiwally when the target platform is well definéd.
This automation is possible because the tools xploi¢ features of the hardware and operating syste
on which your program will execute. For examplalifof your programs will be executed on IBM-
compatible PCs running Windows, your compiler catomate—and, therefore, hide from your view—
certain aspects of the software build process. o software development tools, on the other hand,
can rarely make assumptions about the target phatfimstead, the user must provide some of her own
knowledge of the system to the tools by giving thraore explicit instructions.

[T Used this way, the term "target platform" is hesderstood to include not only the hardware but als
the operating system that forms the basic runtinmr@nment for your software. If no operating syste
is present, as is sometimes the case in an embsgsm, the target platform is simply the processo
on which your program runs.

The process of converting the source code reprasemiof your embedded software into an executable
binary image involves three distinct steps:

1. Each of the source files must be compiled or askainibto an object file.

2. All of the object files that result from the firstep must be linked together to produce a single
object file, called the relocatable program.
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3. Physical memory addresses must be assigned teltise offsets within the relocatable
program in a process called relocation.

The result of the final step is a file containingexecutable binary image that is ready to rurhen t
embedded system.

The embedded software development process justilbedas illustrated irFigure 4-1 In this figure,

the three steps are shown from top to bottom, thightools that perform the steps shown in boxes tha
have rounded corners. Each of these developmelsttida@s one or more files as input and produces a
single output file. More specific information abdbése tools and the files they produce is provided
the sections that follow.

Figure 4-1. The embedded software development psece

UC++ I UC++ Assembly I

[ Compiler . Compiler ( Assembler .
Object ] Object Object |

»| Linker

i

t

Relocatable

Locator

Executable

i

Each of the steps of the embedded software buildgss is a transformation performed by software
running on a general-purpose computer. To distsigthis development computer (usually a PC or
Unix workstation) from the target embedded systiéis,referred to as the host computer. The compile
assembler, linker, and locator run on a host coerpather than on the embedded system itself. Yet,
these tools combine their efforts to produce arcetable binary image that will execute properlyyonl
on the target embedded system. This split of respoities is shown irFigure 4-2
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Figure 4-2. The split between host and target

> compile foo.c

> assemble bar.asm
» link foo.o bar.o
> locate foo.exe

Embedded System
.
=00
Target
The development tools that build The embedded software that is
the embedded software run on a built by those tools runs on the
general-purpose computer embedded system

In this book, we'll be using the GNU tools (compilessembler, linker, and debugger) for our example
These tools are extremely popular with embeddetivaoé developers because they are freely available
(even the source code is free) and support mattyeamhost popular embedded processors. We will use
features of these specific tools as illustratiargttie general concepts discussed. Once understoesd
same basic concepts can be applied to any equivdgerlopment tool. The manuals for all of the GNU
software development tools can be found onlinattat//www.gnu.org/manual

4.1.1. Compiling

The job of a compiler is mainly to translate progsawritten in some human-readable language into an
equivalent set of opcodes for a particular proaedsdhat sense, an assembler is also a compiber (
might call it an "assembly language compiler"), boé that performs a much simpler one-to-one
translation from one line of human-readable mner®to the equivalent opcode. Everything in this
section applies equally to compilers and assemblagether these tools make up the first step@f th
embedded software build process.

Of course, each processor has its own unique maddmguage, so you need to choose a compiler that
produces programs for your specific target proaessdhe embedded systems case, this compiler
almost always runs on the host computer. It sindplgsn't make sense to execute the compiler on the
embedded system itself. A compiler such as thist+tires on one computer platform and produces
code for another—is called a cross-compiler. Theeafsa cross-compiler is one of the defining feagur
of embedded software development.

The GNU C compilerdcc) and assembler§) can be configured as either native compilersoss:
compilers. These tools support an impressive skost-target combinations. Tigec compiler will run
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on all common PC and Mac operating systems. Tlyetg@rocessor support is extensive, including
AVR, Intel x86, MIPS, PowerPC, ARM, and SPARC. Althal information abougcccan be found
online athttp://gcc.gnu.org

Regardless of the input language (C, C++, asserablny other), the output of the cross-compildl wi
be an object file. This is a specially formatteddoy file that contains the set of instructions dath
resulting from the language translation procestidlgh parts of this file contain executable cdbe,
object file cannot be executed directly. In falg internal structure of an object file emphasthes
incompleteness of the larger program.

The contents of an object file can be thought cd &ery large, flexible data structure. The struetof

the file is often defined by a standard format sastthe Common Object File Format (COFF) or
Executable and Linkable Format (ELF). If you'll im@ng more than one compiler (i.e., you'll be wagti
parts of your program in different source languaggsu need to make sure that each compiler is
capable of producing object files in the same fdrmec supports both of the file formats previously
mentioned. Although many compilers (particularlggh that run on Unix platforms) support standard
object file formats such as COFF and ELF, somerstheduce object files only in proprietary formats
If you're using one of the compilers in the latesup, you might find that you need to get all otiy
other development tools from the same vendor.

Most object files begin with a header that desaithe sections that follow. Each of these sections
contains one or more blocks of code or data thgitnated within the source file you created. Howeve
the compiler has regrouped these blocks into rls¢etions. For example, gecall of the code blocks
are collected into a section calledt , initialized global variables (and their initighlaes) into a
section callediata , and uninitialized global variables into a sectoafiedbss .

There is also usually a symbol table somewherkarobject file that contains the names and location
of all the variables and functions referenced witthie source file. Parts of this table may be inglete,
however, because not all of the variables and fonstare always defined in the same file. Thesdhere
symbols that refer to variables and functions afim other source files. And it is up to the linke
resolve such unresolved references.

4.1.2. Linking

All of the object files resulting from the compilanh in step one must be combined. The object files
themselves are individually incomplete, most notablthat some of the internal variable and functio
references have not yet been resolved. The jolhedliriker is to combine these object files andhm
process, to resolve all of the unresolved symbols.

The output of the linker is a new object file tbantains all of the code and data from the inpygaib
files and is in the same object file format. It ddkeis by merging thext , data , andbss sections of the
input files. When the linker is finished executiad),of the machine language code from all of tiui
object files will be in theext section of the new file, and all of the initializand uninitialized
variables will reside in the nesata andbss sections, respectively.
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While the linker is in the process of merging tket®n contents, it is also on the lookout for soieed
symbols. For example, if one object file containsuaresolved reference to a variable named and a
variable with that same name is declared in orte@bther object files, the linker will match thefne
unresolved reference will be replaced with a refeecto the actual variable. For examplégdf is
located at offset 14 of the output data secti@eittry in the symbol table will now contain thdteess.

The GNU linker [d) runs on all of the same host platforms as the GNidpiler. It is a command-line
tool that takes the names of all the object fites] possibly libraries, to be linked as argumenish
embedded software, a special object file that ¢ostlne compiled startup code, which is covereerlat
in this section, must also be included within fles The GNU linker also has a scripting langu#upt
can be used to exercise tighter control over theoblffile that is output.

If the same symbol is declared in more than oneablile, the linker is unable to proceed. It Viitely
complain to the programmer (by displaying an emessage) and exit.

On the other hand, if a symbol reference remaimsaaived after all of the object files have been
merged, the linker will try to resolve the refereram its own. The reference might be to a functsuch
asmemcpy, strlen , ormalloc , that is part of the standard C library, so th&dr will open each of the
libraries described to it on the command line ki@ order provided) and examine their symbol tabfes.
the linker thus discovers a function or variabléwhat name, the referenge will be resolved by
including the associated code and data sectiotsnatite output object filé.! Note that the GNU
linker uses selective linking, which keeps otheteferenced functions out of the linker's outputgma

i We are talking only about static linking here. Witg/namic linking of libraries is used, the codd an
data associated with the library routine are nseited into the program directly.

Unfortunately, the standard library routines oftequire some changes before they can be used in an
embedded program. One problem is that the staritbaadies provided with most software development
tool suites arrive only in object form. You onlyely have access to the library source code to riake
necessary changes yourself. Thankfully, a compafigdCygnus (which is now part of Red Hat)
created a freeware version of the standard C jilf@aruse in embedded systems. This package isctall
newlib . You need only download the source codelff library from the Web (currently located at
http://sourceware.org/newhpbimplement a few target-specific functions, andpile the whole lot. The
library can then be linked with your embedded safewo resolve any previously unresolved standard
library calls.

After merging all of the code and data sectionsrasdlving all of the symbol references, the linker
produces an object file that is a special "reldaatacopy of the program. In other words, the paogris
complete except for one thing: no memory addrelsaes yet been assigned to the code and data
sections within. If you weren't working on an emtbed system, you'd be finished building your
software now.

But embedded programmers aren't always finishel thé build process at this point. The addresses of
the symbols in the linking process are relativeeriel your embedded system includes an operating
system, you'll probably still need an absolutelaled binary image. In fact, if there is an opegti
system, the code and data of which it consistsra®t likely within the relocatable program too. The
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entire embedded application—including the operasygjem—is frequently statically linked together
and executed as a single binary image.

4.1.2.1. Startup code

One of the things that traditional software devetept tools do automatically is insert startup cade:
small block of assembly language code that prepgheeway for the execution of software written in a
high-level language. Each high-level language tsaswn set of expectations about the runtime
environment. For example, programs written in Caiséack. Space for the stack has to be allocated
before software written in C can be properly exeduT hat is just one of the responsibilities assigio
startup code for C programs.

Most cross-compilers for embedded systems inclndesaembly language file callsthrtup.asmcrt0.s
(short for C runtime), or something similar. Thedtion and contents of this file are usually ddxdi
in the documentation supplied with the compiler.

Startup code for C programs usually consists ofdllewing series of actions:

Disable all interrupts.

Copy any initialized data from ROM to RAM.
Zero the uninitialized data area.

Allocate space for and initialize the stack.
Initialize the processor's stack pointer.

Call main .

ouhkwnNpE

Typically, the startup code will also include a fewstructions after the call teain . These instructions
will be executed only in the event that the higheldanguage program exits (i.e., the calinton

returns). Depending on the nature of the embedgstérs, you might want to use these instructions to
halt the processor, reset the entire system, psfiea control to a debugging tool.

Because the startup code is often not insertedvattcally, the programmer must usually assemble it
himself and include the resulting object file amahg list of input files to the linker. He mightezv

need to give the linker a special command-linearpto prevent it from inserting the usual startodes
Working startup code for a variety of target preaes can be found in a GNU package called libgloss

Debug Monitors

In some cases, a debug monitor (or ROM monitaif)edfirst code executed when the board
powers up. In the case of the Arcom board, thesedsbug monitor called RedBobt.
RedBoot, the name of which is an acronym for RegHanbedded Debug and Bootstrap
program, is a debug monitor that can be used tot@as software, perform basic memory,
operations, and manage nonvolatile memory. Thisveoé on the Arcom board contains the
startup code and performs the tasks listed prelyidasnitialize the hardware to a known
state. Because of this, programs downloaded tanr®AM via RedBoot do not need to be
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linked with startup code and should be linked litlacated.

After the hardware has been initialized, RedBoatiseout a prompt to a serial port and waits
for input from the user (you) to tell it what to.d®edBoot supports commands to load
software, dump memory, and perform various oth&kgaWe will take a look at using
RedBoot to load a software program in the next tdrap

[*] Additional information about RedBoot can be foumdine athttp://ecos.sourceware.org/redbobhe
RedBoot User's Guide is located on this site ag Welescription of the RedBoot startup procedure i
contained in the book Embedded Software DevelopméhteCos, by Anthony Massa (Prentice Hall
PTR).

4.1.3. Locating

The tool that performs the conversion from relobkgtgprogram to executable binary image is called a
locator. It takes responsibility for the easiespsof the build process. In fact, you have to detod the
work in this step yourself, by providing informatiabout the memory on the target board as inptlteto
locator. The locator uses this information to asgigysical memory addresses to each of the code and
data sections within the relocatable program.dhtproduces an output file that contains a binary
memory image that can be loaded into the target.

Whether you are writing software for a general-pgsgcomputer or an embedded system, at some point
the sections of your relocatable program must bggasd actual addresses. Sometimes software that is
already in the target does this for you, as RedBoet on the Arcom board.

In some cases, there is a separate developmentédied a locator, to assign addresses. Howaver, i
the case of the GNU tools, this feature is builb ithe linker [d).

The memory information required by the GNU linkande passed to it in the form of a linker script.
Such scripts are sometimes used to control thet exder of the code and data sections within the
relocatable program. But here, we want to do mioa@ just control the order; we also want to essabli
the physical location of each section in memory.

What follows is an example of a linker script foetArcom board. This linker script file is usedotald
the Blinking LED program covered @hapter 3

ENTRY (main)
MEMORY

ram : ORIGIN = 0x00400000, LENGTH = 64M
rom : ORIGIN = 0x60000000, LENGTH = 16M

}

SECTIONS
{
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data : /* Initiali zed data. */

{
_DataStart = . ;

*(.data)
_DataEnd =.;

} >ram

bss : /* Uninitia lized data. */

{
_BssStart = . ;

*(.bss)
_Bssend =.;
} >ram

text : [* The actu al instructions. */

*(.text)
} >ram

This script informs the GNU linker's built-in locatabout the memory on the target board, which
contains 64 MB of RAM and 16 MB of flash ROM. The linker script file instructs the GNU linker to
locate thealata , bss, andtext sections in RAM starting at address 0x0040000@. first executable
instruction is designated with tiETRYcommand, which appears on the first line of thexpding
example. In this case, the entry point is the flamahain .

8] There is also a version of the Arcom board thataias 32 MB of flash. If you have this version of
the board, change the linker script file as follows

rom : ORIGIN = 0x60000000, LENGTH = 32M

Names in the linker command file that begin withuawlerscore (e.g.pataStart ) can be referenced
similarly to ordinary variables from within yours@e code. The linker will use these symbols to
resolve references in the input object files. 8ogkample, there might be a part of the embedded
software (usually within the startup code) thatiesghe initial values of the initialized variablesm
ROM to thedata section in RAM. The start and stop addresseshierdperation can be established
symbolically by referring to the addresses bstastart and_DataEnd .

A linker script can also use various commands ttectlithe linker to perform other operations.
Additional information and options for GNU linkecr#pt files can be found &tttp://www.gnu.org

The output of this final step of the build procesa binary image containing physical addresseghor
specific embedded system. This executable binaagéman be downloaded to the embedded system or
programmed into a memory chip. You'll see how tavcload and execute such memory images in the
next chapter.
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4.2. Building the Blinking LED Program

In this section, we show an example build procedréhe Arcom VIPER-Lite development board. If
another hardware platform is used, a simlar proskssld be followed using the tools and conventions
that accompany that hardware.

The installation procedure for the software develept tools is provided iAppendix B Once the tools
are installed, the commands covered in the follgvsections are entered into a command shell. For
Windows users, the command shell is a Cygwin bash €ygwin is a Unix environment for
Windows); for Linux users, it is a regular commaaeb|l.

In this and subsequent chapters, commands enteeedhell environment are
indicated by the number sigh) (prompt. Commands entered in the RedBoot
' environment are indicated by the RedBoot prormptigoot> ).

¥
-.
o,
[

= I

We will next take a look at the individual commama®rder to manually perform the three separate
tasks (compiling, linking, and locating) descritestlier in this chapter. Then we will learn how to
automate the build procedure with makefiles.

4.2.1. Compile

As we have implemented it, the Blinking LED exampbasists of two source modulésd.cand
blink.c. The first step in the build process is to comphlese two files. The basic structure for ¢joe
compiler command is:

arm-elf-gcc [
opti ons

file

The command-line options we'll need are:

To generate debugging info in default format

To compile and assemble but not link
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-Wall

To enable most warning messages

-l../include
To look in the directoryncludefor header files

Here are the actual commands for compiling the @csofiles:

# arm-elf-gcc —g -c —Wall -1../include led.c
# arm-elf-gcc -g —c -Wall -1../include blink.c

We broke up the compilation step into two sepactateamands, but you can compile the two files with
one command. To use a single command, just putdfdtie source files after the options. If you
wanted different options for one of the sourcesfilgou would need to compile it separately as just
shown. For additional information about compiletiops, take a look dtttp://gcc.gnu.org

Running these commands will be a good way to véhiéy the tools were set up properly. The result of
each of these commands is the creation of an ofiethat has the same prefix as théile, and the
extensiono. So if all goes well, there will now be two addital files—ed.oandblink.o—in the

working directory. The compilation procedure iswhadn Figure 4-3

Figure 4-3. Compiling the Blinking LED program
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S e
led.c blink.c

arm-elf-gcc
GNU C Compiler (gec)

4.2.2. Link and Locate

We now have the two object fileded.oandblink.o—that we need in order to perform the second step
in the build process. As we discussed earlierGN&J linker performs the linking and locating of the
object files.

For the third step, locating, there is a linkeigdile namedviperlite.ld that we input tdd in order to

establish the location of each section in the Ardarard's memory. The basic structure for the linker
and locatetd command is:

arm-elf-Id [
options

file

The command-line options we'll need for this step a

-Map blink.map

To generate a map file and use the given filename
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-T viperlite.ld

To read the linker script

To set the text and data sections to be readaHdle/atable

-0 blink.exe

To set the output filename (if this option is notluded,|d will use the default output filename
a.ou)

The actual command for linking and locating is:

# arm-elf-ld —Map blink.map —T viperlite.ld -N —o bli nk.exe led.o blink.o

The order of the object files determines their etaent in memory. Because we are not linking in any
startup code, the order of the object files id@want. If startup code were included, you wouldhtva
that object file to be located at the proper adslréke linker script file can be used to specifyerenyou
want the startup routine (and other code) to resideemory. Furthermore, you can also use the tinke
script file to specify exact addresses for coddaia, should you find it necessary to do so.

As you can see in this command, the two objecs-fiked.oandblink.o—are the last arguments on the
command line for linking. The linker script fileiperlite.ld, is also passed in for locating the data and
code in the Arcom board's memory. The result &f tommand is the creation of two fileglnk.map
andblink.exe—in the working directory. The linking and locatipgocedure is shown iRigure 4-4

Figure 4-4. Linking and locating the Blinking LED pogram
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; viperlite.Id

arm-elf-ld
GNULinker (Id)

blink.map blink.exe

The.mapfile gives a complete listing of all code and dadiaresses for the final software image. If you
have never seen such a map file before, be suakeca look at this one before reading on. It piesi
information similar to the contents of the linkeript described earlier. However, these are resattser
than instructions and therefore include the aderajths of the sections and the names and locations
the public symbols found in the relocatable progréfe’ll see later how this file can be used as a
debugging aid.

Another Linking Method

You may notice that for examples later in the baucis invoked during the linking proces
Thegcccompiler then invokes the linker indirectly. Whgec compiles certain programs, it
may introduce calls to special runtime librariebibd the scenes. Linking v@gccensures
that the correct versions of these libraries (daftriltilibs) are linked in for the specified
configuration.

2

If the linker,Id, were invoked directly, the correct set of muigliwould also need to be
specified on the command line to ensure that ttegems linked properly. To avoid this, we
will usegccto invoke the linker.
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4.2.3. Format the Output File

The last step of the previous section creates agenof the Blinking LED program that we can load
onto the Arcom board. In certain cases, you migledrto format the image from the build procedure fo
your specific target platform.

One tool included with the GNU toolset that canstssith formatting images is thsrip utility, which
is part of the binary utilities package call@dutils (pronounced "bin-you-tills"). Thstrip utility can
remove particular sections from an object file. Blasic command structure for tsieip utility is:

arm-elf-strip [
options

]
i nput-file
|

-0 output-file

The build procedure for subsequent chapters ildoik generates two executable files: one with debug
information and one without. The executable thattaims the debug information includéisgin its
filename. The debug image should be used gdli If an image is downloaded with RedBoot, the
nondebug image should be used.

The command used to strip symbol information is:

# arm-elf-strip --remove-section=.comment blinkdbg.ex e -0 blink.exe

This removes the section nameasmment from the imagélinkdbg.exeand creates the new output file
blink.exe

There might be another time when you need an irfiegihat can be burned into ROM or flash. The
GNU toolset has just what you need for this tasie Wtility objcopy(object copy) is able to copy the
contents of one object file into another objec.fiThe basic structure for tbéjcopyultility is:

arm-elf-objcopy [
opti ons

]

input-file

output-file

For example, let's suppose we want to convert dinkiag LED program from ELF format into an Intel
Hex Format file!! The command line we use for this is:
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M Intel Hex format is an ASCII file format deviseyl mtel for storing and downloading binary images.

# arm-elf-objcopy -O ihex blink.exe blink.hex

This command uses th® ihexoption to generate an Intel Hex Format file. Timguit file isblink.exe
(theobjcopyutility determines the input file type). Finaltyhe output file is nameblink.hex

u If no output filename is given, tretrip andobjcopyutilities overwrite the origina
— input file with the generated file.

Some of the other GNU tools are useful for prowdather information about the image you have built.
For example, thsizeutility, which is part of théinutils package, lists the section sizes and total size fo
a given object file. Here is the command for udimg size utility:

# arm-elf-size blink.exe

The resulting output is:

text data bss dec hex filename
328 0 0 328 148 blink.exe

The top row consists of column headings and shbeséctionsext , data , andbss . The Blinking
LED program contains 328 bytes in thet section, no bytes in thiata section, and no bytes in the
bss section. Thelec column shows the total image size in decimal, thetiex column shows it in
hexadecimal (decimal 328 = hexadecimal 0x148). &@hel sizes are in bytes. The last column,
flename , contains the filename of the object file.

You will notice that the size of the section, 33&ds, is much smaller than the approximately 3 K& f
size of oumblink.exe This is because debugging information is locaisd in theblink.exefile.

Additional information about the other GNbihutils can be found online &ttp://www.gnu.org

We're now ready to download the program to our ldgweent board, which we'll do in the next chapter.
To wrap up our discussion of building programssl&tke a quick look at another useful tool in the
build process.

4.3. A Quick Look at Makefiles

You can imagine how tedious the build process cbeldf you had a large number of source code files
for a particular project. Manually entering indivel compiler and linker commands on the command
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line becomes tiresome very quickly. In order toiduhis, a makefile can be used. A makefile isrgpsc
that tells themakeutility how to build a particular program. (Theakeutility is typically installed with
the other GNU tools.) Thmakeutility follows the rules in the makefile in order automatically
generate output files from a set of input souresfi

Makefiles might be a bit of a pain to set up, gyt can be a great timesaver and a very powerdlil to
when building project files over and over (and g\again. Having a sample available can reduce the
pain of setting up a makefile.

The basic layout for a makefile build rule is:

target: prerequisite
command

Thetarget is what is going to be built, theeerequisite is a file that must exist before theget
can be created, and tb@nmandis a shell command used to createtsihget . There can be multiple
prerequisites on the target line (separated by white space)amddltiple command lines. But be
sure to put a tab, not spaces, at the beginniegey line containing eommand

Here's a makefile for building our Blinking LED mgg@m:

XCC =arm-elf-gcc
LD =arm-elf-ld
CFLAGS =-g-c-Wall\\
-I../include
LDFLAGS = -Map blink.map -T viperlite.ld -N

all: blink.exe

led.o: led.c led.h
$(XCC) $(CFLAGS) led.c

blink.o: blink.c led.h
$(XCC) $(CFLAGS) blink.c

blink.exe: blink.o led.o viperlite.ld
$(LD) $(LDFLAGS) -0 $@ led.o blink.o

clean:
-rm -f blink.exe *.0 blink.map

The first four statements in this makefile contaamiables for use in the makefile. The variable aam

are on the left side of the equal sign. In this efidgd, the respective variables do the following:

XCC
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Defines the compiler executable program

LD

Defines the linker executable program

CFLAGS

Defines the flags for the compiler

LDFLAGS
Defines the flags for the linker

Variables in a makefile are used to eliminate sofrt@e duplication of text as well as to ease
portability. In order to use a variable in the codhe synta$() is used with the variable name
enclosed in the parentheses.

Note that if a line in a makefile gets too longuyean continue it on the following line by usingth
backslash\( ), as shown with theFLAGSvariable.

Now for the build rules. The build targets in this areall ,led.o ,blink.o , andblink.exe . Unless
you specify a target when invoking theakeutility, it searches for the first target (in ttuase, the first
target isall ) and tries to build it; this, in turn, can leadttéinding and building other targets. Theake
utility creates (or re-creates, as the case mayheefarget file if it does not exist or if the prquisite
files are more recent than the target file.

At this point, it might help to look at the makefiirom the bottom up. In order folink.exe  to be
createdplink.o andled.o need to be built as shown in the prerequisitesvéder, since these files
don't exist, thenakeutility will need to create them first. It will aech for ways to create these two files
and will find them listed as targets in the malefirThemakeutility can create these files because the
prerequisites (the source files) for these twodtrgxist.

Because the targetsi.o andblink.o are handled similarly, let's focus on just on¢hein. The
prerequisites for the targeti.o areled.c andied.h . As stated above, the command tellsrtteke

utility how to create the target. The first partioé command faed.o is a reference to the variable
XCG as indicated by the syntagkccC), and the next part of the command is a referemtieet variable
CFLAGS as indicated by the synt&tCFLAGS) . Themakeutility simply replaces variable references with
the text assigned to them in the makefile. Thel fieat of the command is the source fdec . Strung
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together, these elements construct the commandhimatakeutility executes. This generates a
command on the shell command line as follows:

arm-elf-gcc -g -c -Wall -I../include led.c

This is the same command we entered by hand i tsdmmpile thded.cfile earlier in this chapter, in
the sectioriBuilding the Blinking LED Programi The makeutility compilesblink.cin the same way.

At this point, themakeutility has all of the prerequisites needed toggate the targetink.exe  default
target. The command that threakeutility executes (the same command we enteredabd o link and
locate the Blinking LED program) to buitgink.exe  is:

arm-elf-ld -Map blink.map -T viperlite.ld -N -o bli nk.exe led.o blink.o

You may notice that in this makefile the linkeinsoked directly. Insteadjcc could have been used to
invoke the linker indirectly with the following I

arm-elf-gcc -WI,-Map,blink.map -T viperlite.ld -N - o blink.exe led.o blink.o

When invoking the linker indirectly, the speciatiop —WIis used so thajccpasses the request to
generate a linker map file to the linker rathenthging to parse the argument itself. While thiade
Blinking LED program does not need to link usguy, you should remember that more complex C
programs may need special runtime library supporhfyccand will need to be linked in this way.

The last part of the makefile is the targetn . However, because it was not needed for the defaul
target, the command was not executed.

To execute the makefile's build instructions, synmgilange to the directory that contains the madefil
and enter the command:

# make

Themakeutility will search the current directory for ddinamedmakefile If your makefile has a
different name, you can specify that on the comnienedfollowing the-f option.

With the previous command, tiheakeutility will make the first target it finds. Youan also specify

targets on the command line for timakeutility. For example, becausé is the default target in the
preceding makefile, you can just as easily usddt@ving command:

# make all
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A target callectlean is typically included in a makefile, with commarfds removing old object files
and executables, in order to allow you to credtesh build. The command line for executing than
target is:

# make clean

Keep in mind that we've presented a very basic pl@aof themakeutility and makefiles for a very
basic project. Thenakeutility contains very powerful tools within its eainced features that can benefit
you when executing large and more complex projects.

It is important to keep the makefile updated as ywaject changes. Remember|to

e incorporate new source files and keep your pressgsi up to date. If

" 4+ prerequisites are not set up properly, you mighinge a particular source file, but
that source file will not get incorporated into thald. This situation can leave
you scratching your head.

¥
-.
L
L

Additional information about the GNbhakeutility can be found online dtttp://www.gnu.orgas well

as in the book Managing Projects with GNU makeRb¥pert Mecklenburg (O'Reilly). These resources
will give you a deeper understanding of both rireskeutility and makefiles and allow you to use their
more powerful features.

Chapter 5. Downloading and Debugging

| can remember the exact instant when | realized #aharge part of my life from then on was going t
be spent in finding mistakes in my own programs.

—Maurice Wilkes, Head of the Computer Laboratorytef University of Cambridge, 1959

Once you have an executable binary image storadikeson the host computer, you will need a way to
download that image to the embedded system andiexigcThe executable binary image is usually
loaded into a memory device on the target boardeaeduted from there. And if you have the right
tools at your disposal, it will be possible to Betakpoints in the program or to observe its exeouh
less intrusive ways. This chapter describes variecisniques for downloading, executing, and
debugging embedded software in general, as wélicases on the techniques available on our
development environment.
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5.1. Downloading the Blinking LED Program

With most embedded systems, there are several neges$ an image onto the target and run the
program, some more challenging than others. Ingiesion, we investigate the methods available for
downloading the Blinking LED program onto the Arctamard, as well as some other methods that may
be useful for other projects.

The software development cycle for a PC and an dddzkesystem include many of the same stages.
Figure 5-1is a general diagram of the embedded softwarela@vent cycle.

Figure 5-1. Software development cycle

Design

Implement Code

Build Code Fix Bugs

Download and
Debug

As shown inFigure 5-1 the software development cycle begins with deaigghthe first implementation
of the code. After that, there are usually iteragiof the build, download and debug, and bug-fixing
stages. Because a lot of time is spent in thegse Btages, it helps to eliminate any kinks in pintxcess
so that the majority of time can be spent on delngpand testing the software. (This diagram doés no
take into account the handling of feature creepitably inflicted by the marketing department.)

Because this is a very basic diagram, other stiiggsnay be necessary are profiling and optiminatio
Profiling allows a developer to determine varioustmaes about a program, such as where the processor
is spending most of its time. Optimization is thieqess by which the developer tries to eliminate
bottlenecks in software using various techniquesh s implementing time-critical code in assembly
language. Very often, optimization techniques amuiler-, processor-, or system-specific.

Page 77



Programming Embedded Systems Second Edition

Another task at this stage is integration. Oncediéheelopment cycle is complete, system-level tgssn
typically done. And after a product ships, thewafe enters its maintenance phase for the durafion
the product's life cycle, when the code must bgetpd and sustained. The debugging techniques
shown in this chapter apply to the maintenanceeséagwvell.

Because code must be repeatedly tested on the kemglvare, a quick and straightforward method for
loading software onto the target is ideal. Leteta look at the techniques and tools we can ushifo
task.

5.1.1. Debug Monitors

A debug monitor, also called a ROM monitor, is aliprogram that resides in nonvolatile memory on
the target hardware that facilitates various opematneeded during development. One of the tasitsath
debug monitor handles is basic hardware initialratA debug monitor allows you to download and
run software in RAM to debug the program.

Most debug monitors include many other useful fiessttio assist in the development cycle. For
example, most debug monitors incorporate some ¢dredm mand-line interface (CLI) where
commands can be issued to the debug monitor famuéoa on the target hardware—e.q., via serial.port
These commands include downloading software, runtia program, peeking (reading) and poking
(writing) memory and processor registers, compaoingdisplaying blocks of memory, and setting
initialization configurations for the hardware.

In some systems, a debug monitor is incorporateddrproduction units in the field as well. This\dze
used to update the firmware to add new featurdix dugs after the unit is deployed.

Some processors include a program similar to agleimnitor in on-chip memory. For example, the
TMS320C5000 series DSPs from Texax Instrumentsidech program called a bootloader. This
bootloader is used to transfer software from apre source (off-chip) to internal memory (on-gQhip
allowing code to reside in slower memory for steragd be transferred into faster memory prior to
execution. The bootloader determines where to ¢oaié based upon the boot mode setting, which is
determined by sampling particular DSP I/O pins nigipower up.

u Be aware that the execution speeds of RAM and Rypitally are very different

— Code running from RAM typically executes much fasten code running from
ROM, which could cause the software to behave wffgty. Certain types of
bugs, such as timing errors, may only reveal thérasavhen run from just one
type of memory.

5.1.1.1. RedBoot

The Arcom board includes a debug monitor calledBo@d, which is described in the sidebiBrebug
Monitors' in Chapter 4RedBoot resides in the bootloader flash on theohrboard and uses the
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board's serial port COML1 for its command-line ifaee. The VIPER Technical Manual and VIPER-I/O
Technical Manual describe how to connect the varimodules to the Arcom board.

Once you have the Arcom board connected propeoly,need to connect the Arcom board's COM1 port
to a serial port on your computer using the cattéuded in the development kit.

To communicate with RedBoot's CLI, you need toaurrminal program (minicom in Linux or
HyperTerminal in Windows will do just fine) on yooomputer. Set the serial port settings as follows:

« Baud rate: 115200

« Data bits: 8
« Parity: None
« Stop bits: 1

- Flow control: None

Now you are ready to power on the Arcom board.

B Redboot executes a script after it runs to autarallyiboot embedded Linux (if

— present on your version of the Arcom board). Ineoitd prevent the script from
running, hit the keys Ctrl and C together when RemtButputs its initialization
message.

If all connections are properly made, an initidi@aa message is output from the Arcom board's COM1
port once power is applied, along with the RedBwoimpt, which looks like this:

Ethernet ethO: MAC address 00:80:12:1¢:89:b6
No IP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]

Non-certified release, version W468 V317 - built 10 :11:20, Mar 15 2006
Platform: VIPER (XScale PXA255)

Copyright (C) 2000, 2001, 2002, 2003, 2004 Red Hat, Inc.

RAM: 0x00000000-0x04000000, [0x00400000-0x03fd1000] available

FLASH: base 0x60000000, size 0x02000000, 256 blocks of 0x00020000 bytes each.
== Executing boot script in 1.000 seconds - enter * C to abort

~C

RedBoot>

Because we have not entered an Internet Protdeph(idress for the Arcom board, RedBoot outputs
the messagelo IP info for device! This message can be ignored for now. Another ttongptice is
that we have stopped the boot script from runnamglloading Linux) by entering Ctrl-C (shown in the
preceding code a£) when RedBoot is started.
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The RedBoot initialization message contains infdromaregarding the build and version of the RedBoot
image. The available memory is also listed befbespgrompt, including the RAM and flash memory
address ranges.

You can entehelp at the prompt to get a list of the supported comuisaA description of the RedBoot
commands can be found onlinenhdip://ecos.sourceware.org

5.1.1.2. Downloading with RedBoot

Now that RedBoot is up and running, we are readjotenload and run the Blinking LED program.
RedBoot is able to load and run ELF files. Therefove use thblink.exefile built in Chapter 4as the
program image to run on the Arcom board.

To initiate the download, enter the followirrgd command at the RedBoot prompt:

RedBoot> load —-m xmodem

This tells RedBoot to load an image usingxhedenprotocol as the method. After you press the Enter
key, RedBoot begins to output the characteshile waiting for the file to be sent over.

To begin the file transfer using Windows HyperTarailj select Transf=—*Send File... from the menu
(use a similar command if you have a different teaihprogram). This brings up the Send File dialog
box; select Xmodem for the protocol. Browse tolteation of theblink.exeprogram and select it. Then
click Send. A transfer statistics dialog box wi displayed showing the status of the file transfer

Once the transfer has successfully completed, RetdBdputs a message similar to the following:

Entry point: 0x00400110, address range: 0x00000024- 0x0040014c
xyzModem - CRC mode, 24(SOH)/0(STX)/0(CAN) packets, 2 retries

This shows the entry point of the program—in ttases 0x00400110. If you refer to the map file
generated by the linker during the build procétisk.map the entry point address should look familiar,
as shown in this portion of the map:

Name Origin Length
.text 0x004000b0  0x9c  blink.o
0x00400110 main

The map file shows that the routimein resides at 0x00400110, which is the entry poinefecution
of the Blinking LED program. The value 0x9C is to&al length of the object filblink.o.

5.1.1.3. Running programs with RedBoot
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Now we can run the program. Enter the following otend at the RedBoot prompt:

RedBoot> go

After you press Enter, RedBoot hands control ofAreom board over to the Blinking LED program. If
everything is successful, you should now see teergt.ED blinking on the add-on board.

You have just successfully completed your firstsgdisough the embedded software development cycle.

RedBoot Networking Support

You may notice that the Arcom board contains aretftst port. RedBoot includes a
networking stack to allow communications over thost. For example, you can open up a
Telnet session and communicate with RedBoot oveEthernet port. RedBoot also supports
downloading software using the Trivial File TrangReotocol (TFTP). We leave the
investigation of these advanced RedBoot features a&xercise for you.

5.1.2. When in ROM...

Another way to download embedded software is td kha binary image into a ROM device and
physically insert that chip into a socket on thgéa board. Obviously, the contents of a truly reaty
memory device could not be overwritten. Howevery@sll see inChapter 6embedded systems
commonly employ special read-only memory devices tn be programmed (or reprogrammed) with
the help of a special piece of equipment calleehacg programmer or burner. A device programmer is
a computer system that has one or more IC sockettseotop—of varying shapes and sizes—and is
capable of programming memory devices of all sorts.

In an ideal development scenario, the device prograr would be connected to the same network as
the host computer. That way, files that containcesable binary images could be easily transferoat! t

for ROM programming. After the binary image hasrbgansferred to the device programmer, the
memory chip is placed into a socket of the appedprsize and shape, and the device type is selected
from an on-screen menu. The actual device progragpriocess can take anywhere from a few seconds
to several minutes, depending on the size of tharpiimage, the type of memory device you are ysing
and the quality and speed of your device programmer

After you program the ROM, it is ready to be inedrinto its socket on the board. Of course, this
shouldn't be done while the embedded system Ipstiered on. The power should be turned off and
then reapplied only after the chip has been cdyeifuserted.

B Care should be taken when removing and insertiggpart that is socketed. Ping
— can become bent with surprising ease, and a bdmb&en pin can cause all sorjs
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of problems that are difficult to debug.

As soon as power is applied, a processor will begifetch and execute the code that is stored entid
ROM. However, be aware that each type of procdsa®its own rules about the location of its first
instruction. For example, when the ARM processoes®t, it begins by fetching and executing
whatever is stored at physical address 0x000000ai8.is called the reset address, and the instmsti
located there are collectively known as the regsdecin the case of the Arcom development boasd, th
reset code is part of the RedBoot debug monitor.

If your program doesn't appear to be working, stimgtcould be wrong with your reset code. You
must always ensure that the binary image you'védidanto the ROM satisfies the target processor's
reset rules. During product development, we ofted it useful to turn on one of the board's LEDst ju
after the reset code has been completed. Thatweaknow at a glance that any new code either does o
doesn't satisfy the processor's most basic reqainesn

5.1.2.1. Managing ROM with RedBoot

The Arcom board includes a type of memory calleghl which is in-circuit programmable. Even when
socketed for easy removal, flash memory does nat taabe removed from the board to be
reprogrammed. The RedBoot debug monitor includésvace that can perform the device
programming function.

RedBoot also contains several commands to man#agstefilesystem, called the Flash Image System
(FIS). The FIS allows you to specify regions irsflasimilar to a filesystem on a hard disk drivsirig
the FIS, you can create, write, and erase locabbfiash based on "filenames" you select.

u Be extremely careful not to corrupt the existingugas or configuration data
— residing in flash on the Arcom board. If this hapgeyou could render the board
unusable.

To see what is contained in the FIS, enter thefatlg command:

RedBoot> fis list

which will output a listing similar to this one:

Name FLASH addr Mem addr Length Entry point

FIS directory  0x00000000 0x00000000 0x0001F00 0 0x00000000
RedBoot config 0x0001F000 0x00000000 0x0000100 0 0x00000000
filesystem 0x00020000 0x00000000 0x01FE000 0 0x00000000
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Thislist command shows the images currently availableerRédBoot FIS. There are a few other FIS
commands supported by RedBoot. For details onttier &-1S-related commands and options, refer to
the RedBoot User's Guide onlinehditp://ecos.sourceware.org

You have some decisions to make when deciding malwdnere to download a program to the
hardware. The biggest disadvantage of using flasmany for downloads is that there is no easy way to
debug software that is executing out of flash mgneerROM. When single-stepping or executing to a
breakpoint, the debugger replaces the subsequsnidtion with a software interrupt, which is used

halt the processor's execution. Thus, a debuggsmdovork in any form of read-only memory, such as
flash. Of course, you can still examine the statth@ LEDs and other externally visible hardwanet, b
this will never provide as much information anddieack as a debugger. So, flash might be fine once
you know that your software works and you're re@dgeploy the system, but it's not very helpful
during software development.

Some processors can work around the issue of ergauit of flash or ROM. In some cases, the
processor includes a TRACE instruction that execatsingle instruction and then automatically vexto
to an interrupt. On other processors, a breakpegister gets you back to the debug monitor.

5.2. Remote Debuggers

If available, a remote debugger can be used to iasnexecute, and debug embedded software over a
serial port or network connection between the hasttarget (also called cross-platform debugging).
The program running on the host of a remote debugaga user interface that looks just like angoth
debugger that you might have used. The main delsggeen is usually either a command-line
interface or graphical user interface (GUI). GUbdggers typically contain several smaller windows t
simultaneously show the active part of the souomkeccurrent register contents, and other relevant
information about the executing program.

Note that in the case of embedded systems, thegdeband the software being debugged are executing
on two different computer systems. Remote debuggfware runs on the host computer and provides
the user interface just described. But there i3 albackend component that runs on the target gsoce
and communicates with the host debugger frontered @communications link. The debugger backend
provides low-level control of the target processogure 5-2shows how these two components work
together.

Figure 5-2. Components of a remote debug session
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main() {
int a=98,b;

->b=a-32;

b=b+5/9.0; . Embedded Syste
} Communications Link

Target

The debug monitor resides in ROM—nhaving been pldlcerk either by you or at the factory—and is
automatically started whenever the target procassaset. It monitors the communications linkhe t

host computer and responds to requests from theteetlebugger host software. Of course, these
requests and the monitor's responses must confosanie predefined communications protocol and are
typically of a very low-level nature. Examples efjuests the host software can make are "readeegist
x," "modify register y," "read n bytes of memorgpiing at address z," and "modify the data at asidre

a." The remote debugger combines sequences ofllthedevel commands to accomplish complex
debugging tasks such as downloading a programlesstepping, and setting breakpoints.

- It is helpful to build the program being testedrtolude symbolic debug

s | information, which we did with theg option during the compilation step of the

4+ build procedure itChapter 4 The—g option causes the compiler to place
additional information in the object file for usg the debugger. This debug
information allows the debugger to relate betwéenexecutable program and the
source code.

Fow

"

ey

One such debugger is the GNU debuggeby). Like the other GNU tools, it was originally dgsed for
use as a native debugger and was later given {ligy &b perform remote debugging. Tigelb debug
monitor that runs on the target hardware is callggdlb stub. Additional information abaydb can be
found online ahttp://sources.redhat.com/gdb

The GNU software tools includgh The version installed is CLI-based, so thereagieav commands
to learn in order to run the debugger properly.rélae several GUIs available fpab, such as Insight
(http://sources.redhat.com/insiylaind DataDisplay Debuggért{p://www.gnu.org/software/dgd

RedBoot contains gdb-compatible debug monitor. Therefore, once a hibstrgts to communicate
with the target using thgdb protocol, RedBoot turns control of the target awethegdb stub for the
debug session.
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As described earlier, the host and target usedefinred protocol. Fogdh this protocol is the ASCII-
based Remote Serial Protocol. To learn more athegdb Remote Serial Protocol, go to
http://sources.redhat.com/gdinother good resource for information abgdbis Debugging with
GDB: The GNU Source-Level Debugger, by Richard|Biah, Roland Pesch, and Stan Shebs (Free
Software Foundation¥!

[T This document is included in electronic form oa fircom VIPER-Lite Development Kit CD-ROM.

Remote debuggers are one of the most commonlydmsedlioading and testing tools during
development of embedded software. This is mainbabee of their low cost. Embedded software
developers already have the requisite host compuataddition, the price of a remote debugger duss
add significantly to the cost of a suite of croes«elopment tools (compiler, linker, locator, etc.).

However, there are some disadvantages to usinguwgdaonitor, including the inability to debug
startup code. Another disadvantage is that code¢ exesute from RAM. Furthermore, when using a
debug monitor, a communication channel must egigtterface the target to the host computer.

5.2.1. Debugging on the Arcom Board

gdbis able to operate over serial or TCP/IP netwanit9 RedBoot also suppoddbdebug sessions
over either of these ports. For the example tHaivis, we use the serial port. We then cover some o
the basigdb commands that are in the example.

In order to demonstrate some additional debug dbigedy we have added a
global variablegChapter , to the Blinking LED program.

To prepare for the debugging examples, cycle p@nghe Arcom board and halt the RedBoot boot
script by pressing Ctrl-C. Once the RedBoot inization message is output, you're ready to start.

Invokegdh, passing the name of the program to debug asgam@nt, by using the following
command:

# arm-elf-gdb blink.exe

gdboutputs a message similar to this one:

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Pu blic License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "sho w warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin - -target=arm-elf"...
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If you use the wrong executable that does not eoibugging information with
gdb, the following message is output:

...
%
=0 T,
.

= I

(no debugging symbols found)

There should also be gdb) prompt waiting for input. Next, issue the commandhavegdb connect to
the Arcom board. The following command assumesttiteatomputer's serial port that is connected to
the target board is COML1 (if a different PC sepiait is used, modify the command accordingly):

(gdb) target remote /dev/ttySO

GDB Connection Problems

Because the same computer serial port is beingfosgdband RedBoot communications,
make sure another program (such as the termingtgmoyou used to download the code)
has not opened the port. If another program hasaawver the computer's serial paytb
will not be able to connect to the target Arcomrdo& ou should also verify that the host
computer is connected to the correct serial pothenArcom board.

After gdb successfully connects to the target, a responsi@sito this one will follow:

Remote debugging using /dev/ttySO

The host computer running tigeb command-line interface is now connected togtilestub residing on
the target hardware within RedBoot.

Next download thelink.exe  program onto the target with the command:

(gdb) load blink.exe

When program loading completes successfully, a agessimilar to this one is output fraydb:

Loading section data, size 0x4 Ima 0x400000
Loading section text, size 0x148 Ima 0x400004
Start address 0x400110, load size 332

Transfer rate: 2656 bits in <1 sec, 166 bytes/write
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Now you are ready to start debugging!

Let's start by setting a breakpoint in the codéréakpoint is an address or condition where the
debugger will halt execution of the program. Thbuwdger sets a breakpoint by replacing a given
instruction with a software interrupt (that getatdeack to the debugger). Removing a breakpoint
removes the software interrupt and restores thglgored instruction.

Use the following command to set a breakpoint ih&it when the routinedToggle is called:

(gdb) b ledToggle

14

gdbcommands are not case-sensitive (though symbe)sad can be abbreviat¢d
to the shortest unique string. For example, yousedra breakpoint with any of

+ these commands:

...
%
=8 T,
.

= I

(gdb) breakpoint ledToggle (gdb) break ledToggle (gdb) br
ledToggle (gdb) b ledToggle

Each command accomplishes the same goal—i.engettoreakpoint at the
routineledToggle . The RedBoot CLI commands operate similarly.

After successfully setting the breakpoigtib responds with information about the breakpoint as
follows:

Breakpoint 1 at 0x400070: file led.c, line 66.

The response shows the breakpoint number (1 irc#ss), the address of the breakpoint (0x400070),
the file where the function is locatded.¢, and the line number in that file where the bpeakt is set
(66).

If you need to check which breakpoints are setiwighprogram for gdb session, you can use the
command:

(gdb) infob

The response fromdbis something like this:
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Num Type Disp Enb Address What
1 breakpoint keepy 0x00400070 inledToggle at led.c:66
Next, run the program by entering tttatinue command:

(gdb) c

Oncegdb hits the breakpoint, it will halt execution andjmut the source code line that is to be executed
next:

Breakpoint 1, ledToggle ( ) at led.c:66
66 if (GPIO_0_LEVEL_REG & LED_GREEN)

The first line of output shows the breakpoint twas hit, along with the description. The second lin
shows the line number in the file, 66 in this cagi¢h the source code for that line. The green LED
should be lit now because that is its initial statthe program.

To havegdb show the source code where the current progratojgped, use that command:

(gdb) |

This will dump, by default, 10 source code lines.dump the next 10 source code lines, simply enter
thelist command again.

> To repeat the last command igdb session, simply press Enter.
i w
wh o

A useful feature of the remote debugger is thaait check symbol values. The command to show the
value of theyChapter variable is:

(gdb) print /x gChapter

The/x option formats the output for hexadecimal. Thepoese frongdbis:

$1 = 0x5
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Thes1 is a special history number tlgddbassigns, anddb allows reference back to this value at a later

time. The current value @Chapter is 5.

Theprint command can also be used to change the valusyohbol. In the following command, the

variablegChapter is changed to 12:

(gdb) p/x gChapter=12

The response fromdbis:

$2 = Oxc

This shows that the new valuegafhapter is OxC (12 decimal).

Debug Tip: Using the Memory Map for Symbol Value
Lookup

Debug symbols associate variable and function nawitesheir addresses, as well as inclu
type information about the symbol. This allows youeference a particular variable by us!
its symbol name.

There may be a time when you are unable to use #ysbols for one reason or another; 1
example, perhaps you need to debug code releasaubliyer party and there is no debug
information contained in that program file.

When symbol information is not available, hopeas lost for obtaining additional
information using a debugger. The map file candedito manually look up the symbol
addresses. For example, thimmk.mapfile shows the address of the varialphapter as
0x00400000 with a length of 4 bytes:

.data 0x00400000 0x4 blink.o
0x00400000 gChapter

Given the address of a symbol, you cangdeto find out the current value of that symbol
by using the command:

(gdb) x/d 0x400000

The command stands for "examine." It can be followed immediatey an option

de
ng

or

specifying the format in which to display the détare,/d for decimal) and then the addres
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of memory to read (here 0x400000). In this casi,responds with the following output:

0x400000 <gChapter>: 12

This shows the current value gifhapter as 12 (this value was set in the previous
command). This allows you to peek and poke vargawighout having the symbol
information.

Another very useful feature of a remote debuggéresability to step through lines of source cate,
action commonly called single-stepping. There axerl different types of single-step commandshsuc

as stepping a single machine instruction and stgppisingle source code line. The following
commandpext , steps a single source code line:

When debugging, it is also important to realize tigng compiler optimization
can affect the behavior of the code in the debsgiea. Most compilers have an
option for enabling optimization. For example, wgitc, the—O option invokes
optimization. This option has various levels, whaok indicated by a number (0
1, 2, or 3) that follows the option switch—for exaley—O2 The optimization
switch—Osoptimizes for size. By default, no optimizatiorsedected. Details
about the specific optimizations for each level barfound in thgcc
documentation located onlinel#tp://gcc.gnu.org/onlinedocs

The reason compiler optimization needs to be censdlwhen debugging is
because the compiler can reorder code and remdive sactions of code and/or
variables without telling you. It is for this reasthat most debugging is done w
optimization turned off. Keep this in mind whengl@stepping source code.

The source code line to be executed next is olpgtbas shown here:

GPIO_0_SET_REG = LED_GREEN;

gdb provides two commands for stepping one line @anha:tstep andnext . The difference between

them is that when you reach the start of a funatahstep enters the function and runs the first
statement within the function, wheraast runs the whole function.

Now run the program again with thentinue command:
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You might notice that the LED is now off.
Execution will halt once again whealb encounters the breakpointi@iToggle
gdballows you to check which functions have execugdising thevacktrace orbt command. The

backtrace command shows how your program got to where itertily is. Enter th@acktrace
command as follows:

(gdb) bt

Thegdboutput looks something like this:

#0 ledToggle ( ) at led.c:66
#1 0x00400140 in main ( ) at blink.c:75

The response frommdb shows the most recently executed function (inéddty#0), followed by the
function that called it (indicated kL), and so on. The preceding response shows thabttieemain
called the routinédToggle

With gdbyou can also view the processor's register values:

(gdb) info registers

To print the value of a specific register, usedcbmmand:

(gdb) p/x $pc

This command outputs the current value of the @nwgcounter register in hexadecimal format.

You should now have a good understanding of housegdh. We've examined the most important
commands, but it may be helpful to play around witime others at this point.

In order to remove the breakpoint set earlier,theeelete command:

(gdb) d
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Then confirm the removal of all breakpoints. Yo ceow continue running the program and watch the
LED blink.

To halt execution, press Ctrl-C. However, the paogmay not respond to this command. If this is the
casegdbwill ask if you want to stop debugging the program

One disadvantage of a command-line interface dedrugghat commands need to be learned. However,
once you get the hang of it, you'll find it's quetgsy to maneuver around.

Additional gdb commands can be found by using ¢fibhelp command. Assistance with a specific
command can be obtained by entetiap followed by the command name (elglp breakpoint ).
There is also gdb quick-reference guide available at several sitdise.

5.3. Emulators

An in-circuit emulator (ICE) provides a lot morenfittionality than a remote debugger. In addition to
providing the features available with a remote dgjau, an ICE allows you to debug startup code and
programs running from ROM, set breakpoints for cadeing from ROM, and even run tests that
require more RAM than the system contains.

An ICE typically takes the place of—or emulates—pinecessor on your target board. (Some emulators
come with an adapter that clips over the processdhe target.) The ICE is itself an embedded syste
with its own copy of the target processor, RAM, RCifid embedded software. In-circuit emulators are
usually pretty expensive. But they are powerfulgpand in a tight spot, nothing else will help yget

the debug job done better.

Like a debug monitor, an emulator uses a remotagtgy for its host interface. In some cases,aven
possible to use the same debugger frontend for. Bathbecause the emulator has its own copy of the
target processor, it is possible to monitor androbhe state of the processor in real time. Hiigws
the emulator to support such powerful debug featasehardware breakpoints and real-time tracing.
Additional information about in-circuit emulatorarcbe found in the November 2001 Embedded
Systems Programming article "Introduction to Ineit Emulators,” which can be found online at
http://www.embedded.com

With a debug monitor, you can set breakpoints urymwogram. However, these software breakpoints
are restricted to instruction fetches—the equiviabdéithe command "stop execution if this instruitis
about to be fetched.” Emulators, by contrast, alggport hardware breakpoints. Hardware breakpoints
allow you to stop execution in response to a wiggrety of events—not only instruction fetches, but
also interrupts and reads and writes of memory.ekample, you might set a hardware breakpoint on
the event "address bus = 0x2034FF00 and data bx26310000."

Another useful feature of an in-circuit emulatoraal-time tracing. Typically, an emulator incoratas
a large block of special-purpose RAM that is deididdo storing information about each processor
cycle executed. This feature allows you to seexatty what order things happened, so it can help y
answer questions such as, "Did the timer interogptir before or after the variabler became 12?" In
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addition, real-time trace features are often ableither restrict the information stored or posigass
the data prior to viewing it, to cut down on theaamt of memory wasted.

Another type of debug tool similar to an ICE isackground debug mode (BDM), or JTAG
(pronounced "jay-tag") debugger. JTAG debuggerdyguieally less expensive than in-circuit emulators
but offer much of the same functionality. Thesddaely on a debug interface (the JTAG interface) a
on-chip test circuitry found in modern processéwditional information about JTAG emulators can be
found in the February 2003 Embedded Systems Pragiagrarticle "Introduction to On-Chip Debug,"
located online atttp://www.embedded.com

The article "How to choose an in-circuit emulatior'the July 2002 issue of Embedded Systems
Programming is useful for learning how to selectGia.

Another type of device that emulates a read-onlgnory device is a ROM emulator. Like an ICE, it is
an embedded system that connects to the targetcsnchunicates with the host. However, with this
device, the target connection is via a ROM socketthe embedded processor, it looks like any other
read-only memory device. But to the remote debuggkroks like a debug monitor.

ROM emulators have some advantages over debugomaritirst, no one has to port the debug monitor
code to your particular target hardware. Secorel ROM emulator supplies its own serial or network
connection to the host, so it is not necessargéotie target's own, usually limited, resourcesl An
finally, the ROM emulator is a true replacementtfeg original ROM, so none of the target's memsry i
used up by the debug monitor code.

Some disadvantages of using a ROM emulator arettlaes not provide general debugging
capabilities (i.e., reading processor register@siand is useless in systems that lack externaame

5.4. Other Useful Tools

This section is an introduction to other tools tima@ny software developers find useful.

5.4.1. Simulators

A simulator is a completely host-based program siatilates (hence the catchy name) the functignalit
and instruction set of the target processor. Tlee iterface is usually the same as or similah&d of

the remote debugger. In fact, it might be posdiblese one debugger host for the simulator target a
well, as shown irfrigure 5-3 Although simulators have many disadvantages, #éneyjuite valuable in
the earlier stages of a project when there is abagy actual hardware for the programmers to
experiment with. If you cannot get your hands ategelopment board, a simulator is the best tool for
getting a jump-start on the software development.

Figure 5-3. A common debugger frontend
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By far, the biggest disadvantage of a simulattinas it simulates only the processor. Embeddednyst
frequently contain one or more important peripterkteraction with these devices can sometimes be
imitated with simulator scripts or other workaroantut such workarounds are often more trouble to
create than the simulation is worth. So you propalmn't do too much with the simulator once the
actual embedded hardware is available.

Debug Tip: Hardware Verification Using a Simulator

If you ever encounter a situation in which you—afiaving read the databook—think the
target processor is behaving differently from hoshiould, try running the same software in a
simulator. If your program works fine there, yolttiow it's a problem related to your
hardware. But if the simulator exhibits the samé&dvesss as the actual chip, you'll know
you've been misinterpreting the processor docurtientall along.

5.4.2. Hardware Tools

As mentioned before, one of the key aspects tlfif@rentiates the embedded developer from the typica
software developer is "closeness" to the hardwiegeral tools are available to assist you withifigd

out what is going on with the hardware. A basicamsthnding of how to use these tools is essential t
developing good debugging skills, particularly ginlsese same tools are very useful for low-level
software debugging.
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Once you have access to your target hardware—aetiedly during hardware debug—Iogic analyzers
and oscilloscopes can be indispensable debug #ddgyic analyzer and an oscilloscope are mostulsef
for debugging the interactions between the procesmsw other chips on the board. Because they can
view only signals that lie outside the processowéver, these tools cannot control the flow of
execution of software. This lack of software examutontrol makes them significantly less useful by
themselves, but coupled with a software debuggooh as a remote debugger or an emulator, they can
be extremely valuable.

A logic analyzer is a piece of laboratory equipmeggigned specifically for troubleshooting digital
hardware. It can have dozens or even hundredgafineach capable of detecting only one thing:
whether the electrical signal it is attached tougently at logic level 1 or 0. Any subset of thputs
that you select can be displayed against a timendustrated irFigure 5-4 Most logic analyzers will
also let you begin capturing data, or trigger, gragicular pattern. For example, you might make th
request: "Display the values of input signals btigh 10, but don't start recording what happeni$ unt
inputs 2 and 5 are both zero at the same time."

Figure 5-4. A typical logic analyzer display

]
]

Input 1
Input 2
Input 3 |
Input 5

Input 9
Input 4

time

Debug Tip: External Triggering

Occasionally, it is desirable to coordinate youservation of some set of electrical signals on
the target with the embedded software that is nonthiere. For example, you might want t:
observe the bus interaction between the processborse of the peripherals attached to it.|A
handy trick is to add an output statement to ttivsoe just prior to the start of the
interaction you're interested in. This output staat should cause a unique logic pattern to
appear on one or more processor pins. For exayglemight cause a spare I/O pin to
change from a zero to a one. A logic analyzer ban be set up to trigger on the occurrence
of that event and to capture everything that fodow

|}
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An oscilloscope is another piece of laboratory pmént for hardware debugging. But this one is used
to examine any electrical signal—analog or digitak-any piece of hardware. Oscilloscopes are
sometimes useful for quickly observing the voltagsignal waveform on a particular pin, or, in the
absence of a logic analyzer, for something slightbre complex. However, the number of inputs is
much smaller (there are usually two to four), addaaced triggering logic is not often available.

u When using an oscilloscope, be sure to conneqtribiee’'s ground lead to your
= target hardware's ground. Failing to do so willegyou an incorrect picture of
what is happening.

One of the most primitive debug techniques avadlabthe use of an LED as an indicator of success o
failure. The basic idea is to slowly walk the LEBable code through the larger program. In other
words, first begin with the LED enable code atreet address. If the LED turns on, you can edit th
program—moving the LED enable code to just afterrtext execution milestone—and then rebuild and
test. Because this technique gives you very litfiermation about the state of the processor, fdst
appropriate for very simple, linearly executed pawmgs such as the startup code. But if you don‘ehav
access to a remote debugger or any of the othergdebls, this type of debugging might be your only
choice.

If an LED is not present on your hardware platfoyau can still use this debug technique with an 1/O
signal and an oscilloscope. In this case, set/@eaignal to a specific level once you reach ai@aer
execution milestone. Using the oscilloscope, yautban probe that 1/O pin to determine whether the
code has set it appropriately. If so, you know thatcode executed successfully up to that poitt, a
you can now move the I/O signal code to the nelstone.

The method of using an 1/O signal and an oscillpsaran also be used as a basic performance
measurement tool. An I/O pin can be used to medsawelong a program is spending in a given
routine, or how long it takes to execute a paréicfdlagment of code. This can show potential
bottlenecks in the program.

For example, to precisely measure the length of 8pent in theelay_ms routine (when passed in a
parameter of 1), we could set an I/O pin high wiverenter the routine and then set the same 1/O pin
low before exiting. We could then attach an ossilmpe lead to this I/O pin to measure the amount of
time that the 1/O pin is high, which is the timesgpin thedelay ms routine. The oscilloscope screen
should look similar to the image kigure 5-5

Figure 5-5. Using /O signals for debug and perfoance measurements
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As shown inFigure 5-5 channel 1 (CH 1) is the probe that captured igy@gas The dotted horizontal
lines indicate voltage increments—in this casepl®svper division; the dotted vertical lines indiea
time increments—in this case, 500 microsecondslpésion. The "T" at the top of the screen, along
with the arrow, indicate when the oscilloscopegéeed on the falling edge of the 1/0O pin. The I/O
signal goes from (approximately) 0 to 3.3 volts.

Incidentally, this test shows that the actdehy ms routine that is supposed to delay for 1 millisetton
is a little off, because the time from setting K pin high to setting the 1/0 pin low is a biniger than
two divisions.

If /O pins are available and several inputs argsuted by the oscilloscope, you can use multife |
signals simulataneously in order to get a snapshibie entire system. In more complex systems, you
can move the 1/0O set calls around in the variousimes and measure how each routine is performing.

Finding Pin 1

Before (carefully) probing around the circuit bodet's learn how to identify particular pins
on an IC Figure 5-6shows several common methods used to identifyL @n an IC. As
shown in this figure, a square pad is often usegifo 1, whereas the other pads are typically
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circles. This is typically the case when the I@is dual inline package (DIP). Another
indicator of pin 1 is a silkscreened circle nexpio 1.

IC manufacturers also indicate pin 1 by puttingeita circular indentation next to it or an arc
indentation on the top of the IC, in which case Dis located to the left of this indentation.
On some smaller chips, the pin 1 side is chamféaeapove is cut). The other pin numbers
almost always increase as you move counterclockinese pin 1 around the chip.

A combination of these may be used in some casms Might want to take a look at the
Arcom board to get a better idea of what some edelpin-1 indicators look like.

Figure 5-6. Identifying pin 1 on an IC
Silkscreen

Indentations
Pad _ /1

[111

5.4.3. Lint

A lint program is a tool for statically checkingusoe code for portability problems and common cgdin
syntax errors, such as ignored return values gmelityconsistencies. A compiler provides some & thi
error checking, but a lint program verifies thessaa of a program much more carefully and therefore
aids in the development of more robust software.

Setting ugdint is similar to setting up a compiler, where diff@reptions are passed into the program to
control the type of output produced. In fact, yam @augment your build procedure to include a lint
check that sends its output to a file for you waee at a later time.

A good introduction to usinlint is the article "Introduction to Lint" from the diges of Embedded
Systems Programming. This article can be founcherdithttp:/ /www.embedded.confor additional
information, pick up Checking C Programs with Liby, lan F. Darwin (O'Reilly).
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Several commercial and open source lint programsiaailable. One such program is called Splint.
Additional information about Splint as well as th&est release of it can be found online at
http://www.splint.org

5.4.4. Version Control

Management of source code is an important panmypf@velopment project. This is especially true
when multiple developers are working on the sanuecgcode at the same time.

Version control software allows for storage of s®ucode in a repository that can be updated as the
project progresses through the different developrseges. Various version control programs offer
several features such as logging, file comparisand,tagging releases, as well as tracking bug fixe
and code updates for new features. Version costriblvare can also assist in finding bugs that were
introducted after changes were made to a stable @dase.

Version control software can be useful not justsource code but for all files associated with ectjc

project or product, including programs, the todsdito build the software, and documentation. There
are several open source version control programadéle. Here are a few:

Concurrent Versions System (CV8}tp://ximbiot.com/cvs/cvshone

A system that allows many people to work on largs sf files simultaneously and can even
combine changes from different people to a sinigge Essential CVS, by Jennifer Vesperman
(O'Reilly) covers CVS. There are also several gigdinost applications for CVS, such as the
Windows-based program WinCV 8t{p://www.wincvs.org.

Subversionlfttp://subversion.tigris.o)g

A follow-on to CVS that solves some of CVS's proldefor large projects and is gaining
adherents. Version Control with Subversion, by Baflins-Sussman, Brian W. Fitzpatrick, and
C. Michael Pilato (O'Reilly) covers Subversion venscontrol software. !

[T] The Subversion book is also available onlinkthat://svnbook.red-bean.com

Revision Control System (RC8)ttp://www.gnu.org/software/rgs

A free software (GNU project) version of a traditéd Unix source control program adequate for
small projects.
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5.5. Dig into the Hardware

Most of the debugging tools described in this cbapill be used at one point or another in every
embedded project. Oscilloscopes and logic analyaersnost often used to debug hardware problems;
simulators to test software before the hardwaexlable; and debug monitors and emulators during
the integration and software debug. Lint and versiontrol software are typically used throughowet th
entire project. To be most effective, you shouldenstand what each tool is for and when and wleere t
apply it for the greatest impact.

On many occasions, software engineers don't waythizg to do with the hardware, but this attitude
lessens the software engineer's usefulness. Mojgigs are successful because the team members have
a variety of skills and can assist in areas otan the discipline in which they are trained. Déouk at

a hardware problem as something that can be soligdby a hardware engineer. Look at it as

something that you can learn from and help solve.

Don't be afraid to get in there—alone or with tlaedware engineer—and find out what is going on. If
you don't understand the issue, sit in the lab tiéhhardware engineer for a while to get a bédea of
what the problem is. You might even be able toenaifpiece of code that exacerbates the problem and,
as a result, uncovers its cause.

Chapter 6. Memory

Tyrell: If we give them a past, we create a custiarrtheir emotions and, consequently, we can @bntr
them better.Deckard: Memories. You're talking aboetnories.

—the movie Blade Runner

In this chapter, you will learn everything you neéedknow about memory in embedded systems. In
particular, you will learn about the types of meyngou are likely to encounter, how to test memory
devices to see whether they are working propeng,teow to use flash memory.

6.1. Types of Memory

Many types of memory devices are available foringaodern computer systems. As an embedded
software engineer, you must be aware of the difieze between them and understand how to use each
type effectively. In our discussion, we will appebahese devices from a software viewpoint. As you
are reading, try to keep in mind that the develapnoéthese devices took several decades. The names
of the memory types frequently reflect the histalrigature of the development process.

Most software developers think of memory as beitigee RAM or ROM. But, in fact, there are
subtypes of each class, and even a third clasgbesichmemories that exhibit some of the charadiiess

of both RAM and ROM. In a RAM device, the data stbat each memory location can be read or
written, as desired. In a ROM device, the dateestat each memory location can be read at will, but
never written. The hybrid devices offer ROM-likerp@anence, but under some conditions it is possible
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to overwrite their date&igure 6-1provides a classification system for the memonyiaks that are
commonly found in embedded systems.

Figure 6-1. Common memory types in embedded systems

Memory
RAM Hybrid F
DRAM SRAM NVRAM Flash  EEPROM EPROM Pi

6.1.1. Types of RAM

There are two important memory devices in the RAaNkhify: SRAM and DRAM. The main difference
between them is the duration of the data storeticSRAM (SRAM) retains its contents as long as
electrical power is applied to the chip. Howevéthe power is turned off or lost temporarily, its
contents will be lost forever. Dynamic RAM (DRAM)n the other hand, has an extremely short data
lifetime—usually less than a quarter of a secorfds Ts true even when power is applied continuausly

In short, SRAM has all the properties of the memary think of when you hear the word RAM.
Compared with that, DRAM sounds kind of uselessat¥ood is a memory device that retains its
contents for only a fraction of a second? By itsalich a volatile memory is indeed worthless. Havev
a simple piece of hardware called a DRAM contrati@n be used to make DRAM behave more like
SRAM (see the sideb8DRAM Controllers” in this section for more information). The jobtbe

DRAM controller, often included within the processis to periodically refresh the data stored ia th
DRAM. By refreshing the data several times a sectrelDRAM controller keeps the contents of
memory alive for as long as they are needed. S&ANDR as useful as SRAM after all.

When deciding which type of RAM to use, a systemsigiger must consider access time and cost.
SRAM devices offer extremely fast access timesr@pmately four times faster than DRAM) but are
much more expensive to produce. Generally, SRAMex only where access speed is crucial.
However, if a system requires only a small amodmemory, SRAM may make more sense because
you could avoid the cost of a DRAM controller.
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A much lower cost-per-byte makes DRAM attractiveewéver large amounts of RAM are required.
DRAM is also available in much larger capacitiestisRAM. Many embedded systems include both
types: a small block of SRAM (a few hundred kilags)t along a critical data path and a much larger
block of DRAM (in the megabytes) for everythingeelSome small embedded systems get by without
any added memory: they use only the microcontrsltam-chip memory.

There are quite a few variations of DRAM you mag@mter, including
Synchronous DRAM (SDRAM), Double Data Rate SDRAM® SDRAM),
* and Rambus DRAM (RDRAM).

¥
-.
L)
wh

= I

DRAM Controllers

If your embedded system includes DRAM, there i9plbdy a DRAM controller onboard (or
on-chip) as well. The PXA255 has a DRAM controberchip. The DRAM controller is an
extra piece of hardware placed between the procassibthe memory chips. Its main purpose
is to perform the refresh operations required &pkgour data alive in the DRAM. However,
it cannot do this properly without some help froauy

One of the first things your software must do ifiatize the DRAM controller. If you do not
have any other RAM in the system, you must doliki®re creating the stack or heap,

because those areas of memory would then be loocated DRAM. This initialization code
is usually written in assembly language and plagilin the hardware-initialization module.

Almost all DRAM controllers require a short initizhtion sequence that consists of one of
more setup commands. The setup commands tell titeotler about the hardware interface
to the DRAM and how frequently the data there niestefreshed. To determine the
initialization sequence for your particular systeonsult the designer of the board or read the
databooks that describe the DRAM and DRAM controlfehe DRAM in your system does
not appear to be working properly, it could be that DRAM controller either is not
initialized or has been initialized incorrectly.

6.1.2. Types of ROM

Memories in the ROM family are distinguished by thethods used to write new data to them (usually
called programming or burning) and the numberrogs they can be rewritten. This classification
reflects the evolution of ROM devices from hardwlite one-time programmable to erasable-and-
programmable. A common feature across all thesee®is their ability to retain data and programs
forever, even when power is removed.

The very first ROMs were hardwired devices thattamed a preprogrammed set of data or instructions.

The contents of the ROM had to be specified betbrp production, so the actual data could be used t
arrange the transistors inside the chip! Hardwimeainories are still used, though they are now called

Page 102



Programming Embedded Systems Second Edition

masked ROMs to distinguish them from other typeROM. The main advantage of a masked ROM is
a low production cost. Unfortunately, the cosoi lonly when hundreds of thousands of copies of the
same ROM are required, and no changes are eveecheed

Another type of ROM is the programmable ROM (PROWRjch is purchased in an unprogrammed
state. If you were to look at the contents of apragrammed PROM, you would see that all the bis ar
1s. The process of writing your data to the PROWbIves a special piece of equipment called a device
programmer, which writes data to the device by ypgla higher-than-normal voltage to special input
pins of the chip. Once a PROM has been programm#éds way, its contents can never be changed. If
the code or data stored in the PROM must be chatigeahip must be discarded and replaced with a
new one. As a result, PROMs are also known asioregrogrammable (OTP) devices. Many small
embedded microcontrollers are also considered iomegrogrammable, because they contain built-in
PROM.

An erasable-and-programmable ROM (EPROM) is progmnathin exactly the same manner as a
PROM. However, EPROMSs can be erased and reprogrdmepeatedly. To erase an EPROM, simply
expose the device to a strong source of ultravigbkt. (There is a "window" in the top of the deeito
let the ultraviolet light reach the silicon. Youncauy an EPROM eraser containing this light.) Bindo
this, you essentially reset the entire chip tanisal—unprogrammed—state. The erasure time of an
EPROM can be anything from 10 to 45 minutes, wiceh make software debugging a slow process.

Though more expensive than PROMSs, their abilitpgaeprogrammed made EPROMs a common
feature of the embedded software development atithgeprocess for many years. It is now relatively
rare to see EPROMSs used in embedded systems,yalsabe been supplanted by newer technologies.

6.1.3. Hybrid Types

As memory technology has matured in recent yeheslite between RAM and ROM devices has
blurred. There are now several types of memoryadbatbine the best features of both. These deviges d
not belong to either group and can be collectivefgrred to as hybrid memory devices. Hybrid
memories can be read and written as desired, I ,Fut maintain their contents without electrical
power, just like ROM. Write cycles to hybrid menesiare similar to RAM, but they take significantly
longer than writes to a RAM, so you wouldn't wanuse this type for your main system memory. Two
of the hybrid devices, EEPROM and flash, are detamets of ROM devices; the third, NVRAM, is a
modified version of SRAM.

An electrically-erasable-and-programmable ROM (EBRR is internally similar to an EPROM, but
with the erase operation accomplished electric@ltiditionaly, a single byte within an EEPROM can be
erased and rewritten. Once written, the new dalla@vnain in the device forever—or at least urttibi
electrically erased. One tradeoff for this improvexctionality is higher cost; another is that tadly
EEPROM is good for 10,000 to 100,000 write cycles.

EEPROMs are available in a standard (address a@adda) parallel interface as well as a serial

interface. In many designs, the Inter-I&Q) or Serial Peripheral Interface (SPI) buses agel o
communicate with serial EEPROM devices. We'll takeok at the3C and SPI buses @hapter 13
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Flash is the most important recent advancemeneimmany technology. It combines all the best features
of the memory devices described thus far. Flash ongighevices are high-density, low-cost, nonvolatile
fast (to read, but not to write), and electricalprogrammable. These advantages are overwhelming,
and the use of flash memory has increased drartgtic@mbedded systems as a direct result.

Erasing and writing data to a flash memory requarepecific sequence of writes using certain data
values. From a software viewpoint, flash and EEPR@ghnologies are very similar. The major
difference is that flash devices can be erased amysector at a time, not byte by byte. Typicat@e
sizes range from 8 KB to 64 KB. Despite this disatage, flash is much more popular than EEPROM
and is rapidly displacing many of the ROM devices\all.

The third member of the hybrid memory class is mietie RAM (NVRAM). Nonvolatility is also a
characteristic of the ROM and hybrid memories dised earlier. However, an NVRAM is physically
very different from those devices. An NVRAM is ublygust an SRAM with a battery backup. When
the power is on, the NVRAM operates just like attyeo SRAM. But when the power is off, the
NVRAM draws just enough electrical power from tregtbry to retain its current contents. NVRAM is
sometimes found in embedded systems to store sy@igoal information. Incidentally, the "CMOS" in
an IBM-compatible PC was historically an NVRAM.

Table 6-1summarizes the characteristics of different mentygpes.

Table 6-1. Memory device characteristics
Memory Volatile? | Writable? Erase{rewrlte Erase/rewrite Relative cost Relative
type size cycles speed
SRAM Yes Yes Byte Unlimited Expensive Fast
DRAM Yes Yes Byte Unlimited Moderate Moderate
Masked Inexpensive
ROM No No N/A N/A (in quantity) Slow
PROM |No  |Onee:with 1y, N/A Moderate | Slow
programmer
EPROM | No ves, with e e chip | HiMited (s€€  yioderate | Slow
programmer specs)
Limited (see Moderate to
EEPROM | No Yes Byte Expensive read, slow to
specs) i
write
Flash No Yes Sector Limited (see Moderate Fastto ree_1d,
specs) slow to write
NVRAM |No Yes Byte None Expensive Fast
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6.2. Direct Memory Access

Since we are discussing memory, this is a good tinekscuss a memory transfer technique callecctire
memory access (DMA). DMA is a technique for trangifg blocks of data directly between two
hardware devices with minimal CPU involvement.Ha tibsence of DMA, the processor must read the
data from one device and write it to the other, byte or word at a time. For each byte or word
transferred, the processor must fetch and execsgg@ence of instructions. If the amount of dataeto
transferred is large, or the frequency of transferggh, the rest of the software might neveraget
chance to run. However, if a DMA controller is gres it can perform the entire transfer, with dittl
assistance from the processor.

Here's how DMA works. When a block of data needsadransferred, the processor provides the DMA
controller with the source and destination addessel the total number of bytes. The DMA controller
then transfers the data from the source to thende®in automatically. When the number of bytes
remaining reaches zero, the block transfer ends.

In a typical DMA scenario, the block of data isnséerred directly to or from memory. For example, a
network controller might want to place an incomiregwork packet into memory as it arrives but notify
the processor only once the entire packet has teeeived. By using DMA, the processor can spend
more time processing the data once it arrives essltime transferring it between devices. The
processor and DMA controller must use the sameesddand data buses during this time, but this is
handled automatically by the hardware, and thegs®ar is otherwise uninvolved with the actual
transfer. During a DMA transfer, the DMA controlkbitrates control of the bus between the progesso
and the DMA operation.

6.3. Endian Issues

Endianness is the attribute of a system that ineicashether integers are represented from lefgtd r

or right to left. Why, in today's world of virtuahachines and gigaHertz processors, would a
programmer care about such a silly topic? Wellpunhately, endianness must be chosen every time a
hardware or software architecture is designed tlaeek isn't much in the way of natural law to help

the decision.

Endianness comes in two varieties: big and lial®ig-endian representation has a multibyte integer
written with its most significant byte on the ledtnumber represented thus is easily read by Englis
speaking humans. A little-endian representatiortherother hand, places the most significant bgte o
the right. Of course, computer architectures dwavie an intrinsic "left” or "right.” These humamnes
are borrowed from our written forms of communicati@he following definitions are more precise:

Big-endian

Means that the most significant byte of any muligbgata field is stored at the lowest memory
address, which is also the address of the largkt fi
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Little-endian

Means that the least significant byte of any myteldata field is stored at the lowest memory
address, which is also the address of the largket fi

The origin of the odd terms big-endian and litttelan can be traced to the 1726 book Gulliver's
Travels, by Jonathan Swift. In one part of theystogsistance to an imperial edict to break softeldo
eggs on the "little end" escalates to civil wareThot is a satire of England's King Henry Vlllieak
with the Catholic Church. A few hundred years laiterl981, Danny Cohen applied the terms and the
satire to our current situation in IEEE Computesl (14, no. 10).

6.3.1. Endianness in Devices

Endianness doesn't matter on a single system.ttermanly when two computers are trying to
communicate. Every processor and every communitatiotocol must choose one type of endianness
or the other. Thus, two processors with differemdianness will conflict if they communicate through
memory device. Similarly, a little-endian processging to communicate over a big-endian network
will need to do software-byte reordering.

Intel's 80x86 processors and their clones areddtidian. Sun's SPARC, Motorola's 68K, and the
PowerPC families are all big-endian. Some processeen have a bit in a register that allows the
programmer to select the desired endianness. TBBXprocessor supports both big- and little-endian
operation via bit 7 in Control Register 1 (Copramsl5 (CP15) register 1).

An endianness difference can cause problems ifrgpater unknowingly tries to read binary data
written in the opposite format from a shared menocgtion or file.Figure 6-Za) shows the memory
contents for the data 0x12345678 (a long), OXAB@mv¢rd), and OXEF (a byte) on a little-endian
machine. The same data represented on a big-emdiahnine is shown ikigure 6-Zb).

Figure 6-2. (a) Little-endian memory, (b) big-endianemory

Address Offset 00 01 02 03 AddressOffset 00 01 02 03
long | 78 | 56 | 34 | 12 long | 12 | 34 | 56 | 78
Word | (D | AB Word | AB | (D
Byte | EF Byte | EF
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6.3.2. Endianness in Networking

Another area where endianness is an issue iswonetommunications. Since different processor
types (big-endian and little-endian) can be onstli@e network, they must be able to communicate with
each other. Therefore, network stacks and commtimicprotocols must also define their endianness.
Otherwise, two nodes of different endianness wbeldinable to communicate. This is a more
substantial example of endianness affecting theeeladd programmer.

As it turns out, all of the protocol layers in tTh€P/IP suite are defined as big-endian. In othed&,o
any 16- or 32-bit value within the various layeatlers (for example, an IP address, a packet leagth,
checksum) must be sent and received with its mgstfisant byte first.

Let's say you wish to establish a TCP socket cdioreto a computer whose IP address is 192.0.1.2.
IPv4 uses a unique 32-bit integer to identify eaetwork host. The dotted decimal IP address must be
translated into such an integer.

The multibyte integer representation used by th@/TRprotocols is sometimes called network byte
order. Even if the computers at each end are-Bttidian, multibyte integers passed between themh mus
be converted to network byte order prior to trarssmin across the network, and then converted lmack t
little-endian at the receiving end.

Suppose an 80x86-based, little-endian PC is tallkirySPARC-based, big-endian server over the
Internet. Without further manipulation, the 80x86gessor would convert 192.0.1.2 to the little-andi
integer 0x020100CO0 and transmit the bytes in tHeviing order: 0x02, 0x01, 0x00, 0xCO. The SPARC
would receive the bytes in the followng order: 0x0201, 0x00, OxCO. The SPARC would reconstruct
the bytes into a big-endian integer 0x020100cO0,maisthterpret the address as 2.1.0.192.

Preventing this sort of confusion leads to an amlttle implementation detail for TCP/IP stack
developers. If the stack will run on a little-endarocessor, it will have to reorder (at runtime) bytes
of every multibyte data field within the variougéas' headers. If the stack will run on a big-endia
processor, there's nothing to worry about. Foistaek to be portable (that is, to be able to run on
processors of both types), it will have to decideether or not to do this reordering. The decisgon i
typically made at compile time.

A common solution to the endianness problem isfind a set of four preprocessor macros:

htons()

Reorder the bytes of a 16-bit unsigned value frootgssor order to network order. The macro
name can be read "host to network short."

htonl()
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Reorder the bytes of a 32-bit unsigned value frootgssor order to network order. The macro
name can be read "host to network long."

ntohs()

Reorder the bytes of a 16-bit unsigned value fretaork order to processor order. The macro
name can be read "network to host short."

ntohl()

Reorder the bytes of a 32-bit unsigned value fretaork order to processor order. The macro
name can be read "network to host long."

Following is an example of the implementation efsd macros. We will take a look at the left shiff) (
and right shift £>) operators irChapter 7

#if defined(BIG_ENDIAN) && !defined(LITTLE_ENDIAN)

#define htons(A) (A)
#define htonl(A) (A)
#define ntohs(A) (A)
#define ntohl(A) (A)

#elif defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN )
#define htons(A) ((((uint16_t)(A) & 0xff00) >> 8) I\
(((uint16_t)(A) & 0x00ff) << 8))
#define htonl(A) ((((uint32_t)(A) & 0xff000000) >>24) |\
(((uint32_t)(A) & 0x00ff0000) >>8) |\
(((uint32_t)(A) & 0x0000ff00) << 8) |\
(((uint32_t)(A) & 0x000000ff) << 24))

#define ntohs  htons
#define ntohl  htohl

#else
#error Either BIG_ENDIAN or LITTLE_ENDIAN must b e #defined, but not both.

#endif

If the processor on which the TCP/IP stack is touseis itself also big-endian, each of the fouicroa
will be defined to do nothing, and there will benumtime performance impact. If, however, the
processor is little-endian, the macros will reorter bytes appropriately. These macros are roytinel
called when building and parsing network packetswahen socket connections are created.
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Runtime performance penalties can occur when uBZ#y/IP on a little-endian processor. For that
reason, it may be unwise to select a little-engiatessor for use in a device with an abundance of
network functionality, such as a router or gatewaybedded programmers must be aware of the issue
and be prepared to convert between their differgmtesentations as required.

6.4. Memory Testing

One of the first pieces of serious embedded soéiwau are likely to write is a memory test. Onae th
prototype hardware is ready, the designer woule $ldme reassurance that he has wired the addiiss an
data lines correctly and that the memory chipsaamking properly. At first this might seem like aifly
simple assignment, but as you look at the problerernlosely, you will realize that it can be ditfit

to detect subtle memory problems with a simple tadtact, as a result of programmer naiveté, many
embedded systems include memory tests that wotddtdenly the most catastrophic memory failures.
Some of these might not even notice that the merioips have been removed from the board!

The purpose of a memory test is to confirm thahestorage location in a memory device is workimg. |
other words, if you store the number 50 at a paldicaddress, you expect to find that number stored
there until another number is written. The baseaibehind any memory test, then, is to write soghe s
of data values to each address in the memory devideverify the data by reading it back. If alltioé
values read back are the same as those that wigtenwthen the memory device is said to passdbe t
As you will see, it is only through careful selectiof the set of data values that you can be &iateat
passing result is meaningful.

Of course, a memory test such as the one justidedas unavoidably destructive. In the process of
testing the memory, you must overwrite its priontemts. Because it is generally impractical to
overwrite the contents of nonvolatile memories,tésts described in this section are generally used
only for RAM testing. In fact, running comprehersimemory tests on flash or EEPROM is often a bad
idea because the number of writes involved cantshahe useful life of the device. However, if the
contents of a hybrid memory are unimportant—as #reyduring the product development stage—these
same algorithms can be used to test those desogslh We address the problem of validating the
contents of a nonvolatile memory in the sectigalidating Memory Content$ later in this chapter.

6.4.1. Common Memory Problems

Before learning about specific test algorithms, gbould be familiar with the types of memory
problems that are likely to occur. One common mseption among software engineers is that most
memory problems occur within the chips themsel¥ésugh a major issue at one time (a few decades
ago), problems of this type are increasingly rdtee manufacturers of memory devices perform a
variety of post-production tests on each batchhgi< If there is a problem with a particular batitis
unlikely that one of the bad chips will make itsywato your system.

The one type of memory chip problem you could entewis a catastrophic failure. This is usually
caused by some sort of physical or electrical damaghe chip after manufacture. Catastrophic fagu
are uncommon, and they usually affect large postmithe chip. Because a large area is affectesl, it
reasonable to assume that catastrophic failurebeitletected by any decent test algorithm.
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In our experience, a more common source of mematyl@ms is the circuit board. Typical circuit
board problems are:

« Problems with the wiring between the processorraachory device
« Missing memory chips
« Improperly inserted memory chips

These are the problems that a good memory testithiigoshould be able to detect. Such a test should
also be able to detect catastrophic memory failmi®out specifically looking for them. So let'ssduss
circuit board problems in more detail.

6.4.1.1. Electrical wiring problems

An electrical wiring problem could be caused byeamr in design or production of the board or as th
result of damage received after manufacture. E&ttheawires that connect the memory device to the
processor is one of three types:

« Address signal
« Data signal
« Control signal

The address and data signals select the memonydo@nd transfer the data, respectively. The abntr
signals tell the memory device whether the processats to read or write the location and precisely
when the data will be transferred. Unfortunatelye @r more of these wires could be improperly réute
or damaged in such a way that it is either shqfited connected to another wire on the board)p@no
(not connected to anything). Shorting is often edusy a bit of solder splash, whereas an open wire
could be caused by a broken trace. Both casedus®adted inFigure 6-3

Figure 6-3. Possible wiring problems
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Memory Memory |
Processor Processor
Shorted Wire Open Wire

Problems with the electrical connections to thecpssor will cause the memory device to behave
incorrectly. Data might be corrupted when it's sthrstored at the wrong address, or not storelll at a
Each of these symptoms can be explained by winoglpms on the data, address, and control signals,
respectively.

If the problem is with a data signal, several dats might appear to be "stuck together” (i.e., two
more bits always contain the same value, regardiege data transmitted). Similarly, a data bighti

be either "stuck high" (always 1) or "stuck lowlways 0). These problems can be detected by wréing
sequence of data values designed to test thatdedalpin can be set to 0 and 1, independentlyl dhel
others.

If an address signal has a wiring problem, theautistof two memory locations might appear to
overlap. In other words, data written to one adslved instead overwrite the contents of another
address. This happens because an address bg #tadried or open causes the memory device tansee a
address different from the one selected by thequsr.

Another possibility is that one of the control saggis shorted or open. Although it is theoreticall
possible to develop specific tests for control algeroblems, it is not possible to describe a gartest
that covers all platforms. The operation of mangtom signals is specific to either the processahe
memory architecture. Fortunately, if there is agbemn with a control signal, the memory probably Wwon
work at all, and this will be detected by other noeyrtests. If you suspect a problem with a control
signal, it is best to seek the advice of the beatdsigner before constructing a specific test.

6.4.1.2. Missing memory chips
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A missing memory chip is clearly a problem thatiddde detected. Unfortunately, because of the
capacitive nature of unconnected electrical wisespe memory tests will not detect this problem. For
example, suppose you decided to use the follovaagalgorithm: write the value 1 to the first looat

in memory, verify the value by reading it back, e to the second location, verify the value, v8tto
the third location, verify, and so on. Because aaeld occurs immediately after the corresponding
write, it is possible that the data read back regmés nothing more than the voltage remaining en th
data bus from the previous write. If the data &drback quickly, it will appear that the data hasrb
correctly stored in memory, even though there isnemory chip at the other end of the bus!

To detect a missing memory chip, a better test i@stsed. Instead of performing the verificaticadre
immediately after the corresponding write, perf@@veral consecutive writes followed by the same
number of consecutive reads. For example, writevéthege 1 to the first location, write the valueoZie
second location, write the value 3 to the thirdatomn, and then verify the data at the first lomatithe
second location, and so on. If the data valuesiaigue (as they are in the test just described), th
missing chip will be detected: the first value réadk will correspond to the last value written (@her
than to the first (1).

6.4.1.3. Improperly inserted chips

If a memory chip is present but improperly insert®mme pins on the memory chip will either not be
connected to the circuit board at all or will bennected at the wrong place. These pins will be gfart
the data bus, address bus, or control wiring. Ts&es will usually behave as though there is angiri
problem or a missing chip. So as long as you t@swiring problems and missing chips, any improyperl
inserted chips will be detected automatically.

Before going on, let's quickly review the typesyedmory problems we must be able to detect. Memory
chips only rarely have internal errors, but if ttiey they are typically catastrophic in nature shduld

be detected by any test. A more common sourceotigms is the circuit board, where a wiring
problem can occur or a memory chip might be missinignproperly inserted. Other memory problems
can occur, but the ones described here are theaooshon and also the simplest to test in a generic
way.

6.4.2. Developing a Test Strategy

By carefully selecting your test data and the omdevhich the addresses are tested, you can dstesft
the memory problems described earlier. It is uguadist to break your memory test into small, single
purpose pieces. This helps to improve the effigresfche overall test and the readability of theeo
More specific tests can also provide more detaiiémrmation about the source of the problem, if ane
detected.

We have found that it is best to have three indigldnemory tests, which should be executed in the
following order:

1. Data bus test

2. Address bus test
3. Device test
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The first two test for electrical wiring problemsdaimproperly inserted chips; the third is intended
detect missing chips and catastrophic failuresasinintended consequence, the device test wal als
uncover problems with the control bus wiring, thibutgcannot provide useful information about the
source of such a problem.

The reason the order is important is that the addoers test assumes a working data bus, and tieedev
test results are meaningless unless both the adadnelsdata buses are known to be sound. If arheof t
tests fail, you should work with a hardware enginedocate the source of the problem. By lookihg a
the data value or address at which the test fasleel should be able to quickly isolate the probbenthe
circuit board.

6.4.2.1. Data bus test

The first thing we want to test is the data busngirWe need to confirm that any value placed @n th
data bus by the processor is correctly receivethbynemory device at the other end. The most olsviou
way to test that is to write all possible data ealand verify that the memory device stores eaeh on
successfully. However, that is not the most effitiest available. A faster method is to test the dne

bit at a time. The data bus passes the test if @aizhbit can be set to 0 and 1, independentlgeobther
data bits.

A good way to test each bit independently is tdgrer the so-called walking 1's teSiable 6-2shows
the data patterns used in an 8-bit version oftdgs The name walking 1's comes from the factdahat
single data bit is set to 1 and "walked" through ¢ntire data word. The number of data valuesstoige
the same as the width of the data bus. This redheasumber of test patterns frorht@ n, where n is
the width of the data bus.

Table 6-2. Consecutive data values for an 8-bit kvag 1's test

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

Because we are testing only the data bus at tinig, @l of the data values can be written to tame
address. Any address within the memory deviceduallHowever, if the data bus splits as it makes its
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way to more than one memory chip, you will neegedorm the data bus test at multiple addresses—
one within each chip.

To perform the walking 1's test, simply write tlwstfdata value in the table, verify it by readihback,
write the second value, verify, and so on. Whenngach the end of the table, the test is complétes.
time, it is okay to do the read immediately aftex torresponding write because we are not yet hgoki
for missing chips. In fact, this test may provideaningful results even if the memory chips are not
installed!

The functionmemtestDataBus shows how to implement the walking 1's test. $uases that the caller
will select the test address, and tests the esgiref data values at that address. If the datasbus
working properly, the function returns 1 and thegpaeterppFailAddr  is set taNULL. Otherwise it
returns 0, and the address at which the test falesturned in the parameigrailAddr

/* Set the data bus width to 32 bits. */
typedef uint32_t datum;

/************************************************** *k% ** *%

*

* Function: memtestDataBus

*

* Description: Test the data bus wiring in a memor y region by
* performing a walking 1's test at a fixed address
* within that region. The address (a nd hence the
* memory region) is selected by the c aller.
*
* Notes:
*
* Returns: 0 if the test fails. The failure ad dress is returned
* in the parameter ppFailAddr.
* 1 if the test succeeds. The paramet er ppFailAddr is
* set to NULL.
*
*k%k *kk *k% *k% xnn/
int memtestDataBus(datum *pAddress, datum **ppFailA ddr)
{

datum pattern;

*ppFailAddr = NULL;

/* Perform a walking 1's test at the given addr ess. */
for (pattern = 1; pattern != 0; pattern <<= 1)
{

[* Write the test pattern. */
*pAddress = pattern;

/* Read it back (immediately is okay for th is test). */
if (*pAddress != pattern)

*ppFailAddr = pAddress;
return O;

}
}
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return 1;

}

6.4.2.2. Address bus test

After confirming that the data bus works propeylgu should next test the address bus. Address bus
problems lead to overlapping memory locations. &l@e many possible addresses that could overlap.
However, it is not necessary to check every posgibmbination. You should instead follow the
example of the previous data bus test and trydlatis each address pin during testing. You simphadn

to confirm that each of the address pins can beoseand 1 without affecting any of the others.

The smallest set of addresses that will cover@dbjble combinations is the set of power-of-two
addresses. These addresses are analogous to ¢iielgtt values used in the walking 1's test. The
corresponding memory locations are 0x00000001, 080002, 0x00000004, 0x00000008,

0x00000010, 0x00000020, and so forth. In additemidress 0x00000000 must be tested. The possibility
of overlapping locations makes the address busseder to implement. After writing to one of the
addresses, you must check that none of the otlasrbden overwritten.

It is important to note that in some cases nodfalthe address signals can be tested in this way.o?

the address—the most significant bits on the lefk-eselects the memory chip itself. Another part—
one or two least significant bits on the right—ntigbt be relevant if the data bus is wider tharit8 b
These extra bits should remain constant througpourt address bus test and will thus reduce the
number of test addresses. For example, if the psaecdhas 20 address bits, it can address up to bfMB
memory. If you want to test a 128 KB block of mewsetthat is,"/s of the total one-megabyte address
space—the 3 most significant address bits will iemcanstant. In that case, only the 17 least Sicpnit
bits of the address bus can actually be tested.

To confirm that no two memory locations overlapyyghould first write some initial data value atleac
power-of-two offset within the device. Then writ@ew value—an inverted copy of the initial valuais
good choice—to the first test offset, and verifgttthe initial data value is still stored at evetlyer
power-of-two offset. If you find a location (oth#ran the one you just wrote) that contains the data
value, you have found a problem with the curremirasis bit. If no overlapping is found, repeat the
procedure for each of the remaining offsets.

The functionmemtestAddressBus  shows how this can be done in practice. The fandaiccepts three
parameters. The first parameter is the base addfélse memory block to be tested, the secondis it
size (in bytes), and the third is used to retumatidress of the failure, if one occurs. The szaesed to
determine which address bits should be testedbé&sirresults, the base address should containa 0 i
each of those bits. If the address bus test faiils returned and the address at which the first evas
detected is returned in the parameigtailaddr . Otherwise, the function returns 1 to indicatecass
and setgpFailAddr  tONULL
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/ *k%k *kk *kk *k% *k%k

* Function: memtestAddressBus

*

* Description: Test the address bus wiring in a me mory region by

* performing a walking 1's test on th e relevant bits

* of the address and checking for ali asing. The test

* will find single-bit address failur es such as stuck
* high, stuck low, and shorted pins. The base address
* and size of the region are selected by the caller.

*

* Notes: For best results, the selected base address should

* have enough LSB 0's to guarantee si ngle address bit

* changes. For example, to test a 64 KB region, select
* a base address on a 64 KB boundary. Also, the number
* of bytes must describe a power-of-t WO region size.

*

* Returns: O if the test fails. The failure ad dress is returned
* in the parameter ppFailAddr.

* 1 if the test succeeds. The paramet er ppFailAddr is

* set to NULL.

*

kkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkx *kk *k%k x/
int memtestAddressBus(datum *pBaseAddress, uint32_t numBytes, datum **ppFailAddr)
{

uint32_t addressMask = (numBytes - 1);
uint32_t offset;

uint32_t testOffset;

datum pattern = (datum) OXAAAAAAAA;
datum antipattern = (datum) ~pattern;

*ppFailAddr = NULL;
[* Write the default pattern at each of the pow er-of-two offsets. */
for (offset = sizeof(datum); (offset & addressM ask) = 0; offset <<= 1)

pBaseAddress|offset] = pattern;

/* Check for address bits stuck high. */
pBaseAddress[0] = antipattern;

for (offset = sizeof(datum); offset & addressMa sk; offset <<= 1)
if (pBaseAddress|offset] |= pattern)

*ppFailAddr = &pBaseAddress|offset];

return O;

}
}
pBaseAddress[0] = pattern;
/* Check for address bits stuck low or shorted. */
for (testOffset = sizeof(datum); testOffset & a ddressMask; testOffset <<= 1)
{

pBaseAddress[testOffset] = antipattern;

for (offset = sizeof(datum); offset & addre ssMask; offset <<= 1)

{
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if ((pBaseAddress|offset] |= pattern) & & (offset = testOffset))

*ppFailAddr = &pBaseAddress|offset]
return O;

}
}

pBaseAddress[testOffset] = pattern;
}

return 1,

}

6.4.2.3. Device test

Once you know that the address and data bus war@gorrect, it is necessary to test the integrithe
memory device itself. The goal is to test that g\®t in the device is capable of holding both @ dn
This test is fairly straightforward to implementthit takes significantly longer to execute thae th
previous two tests.

For a complete device test, you must write andiyexiery memory location twice. You are free to
choose any data value for the first pass, as lsnga invert that value during the second. And bsea
there is a possibility of missing memory chipssibest to select a set of data that changes uthig
not equivalent to) the address. A simple exampémisicrement test.

The data values for the increment test are showimeiffirst two columns of able 6-3 The third column
shows the inverted data values used during thenslggass of this test. The second pass represents a
decrement test. There are many other possible ehoiicdata, but the incrementing data pattern is
adequate and easy to compute.

Table 6-3. Data values for an 8-bit increment test
Memory offset Binary value Inverted value
0x00 00000001 11111110
0x01 00000010 11111101
0x02 00000011 11111100
0x03 00000100 11111011
OxFE 11111111 00000000

Page 117



Programming Embedded Systems Second Edition

Table 6-3. Data values for an 8-bit increment test

Memory offset Binary value Inverted value

OxFF 00000000 11111111

The functionmemtestDevice implements just such a two-pass increment/decretash It accepts three
parameters from the caller. The first parameténesstarting address, the second is the numberte$ b
to be tested, and the third is used to return doeess of the failure, if one occurs. The first two
parameters give the user maximum control over warelas of memory are overwritten. The function
returns 1 on success, and the paranppteriladdr  is set toNULL Otherwise, O is returned and the first

address that contains an incorrect data valuagusned in the parametgpFailAddr

~
E
E
E
K
*
E
*
*
*

Function: memtestDevice

Description: Test the integrity of a physical me
performing an increment/decrement t
entire region. In the process, eve
in the device is tested as a zero a
base address and the size of the re
selected by the caller.

Notes:

Returns: 0 if the test fails. The failure ad
in the parameter ppFailAddr.
1 if the test succeeds. The paramet
set to NULL.

L I S T R T B I R I R

* *kk *kk *k% *k%

int memtestDevice(datum *pBaseAddress, uint32_t num

{
uint32_t offset;

uint32_t numWords = numBytes / sizeof(datum);
datum pattern;

*ppFailAddr = NULL;
/* Fill memory with a known pattern. */
for (pattern = 1, offset = 0; offset < numWords

pBaseAddress|offset] = pattern;

[* Check each location and invert it for the se
for (pattern = 1, offset = 0; offset < numWords

if (pBaseAddress|offset] != pattern)

*ppFailAddr = &pBaseAddress|offset];
return O;
}
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pBaseAddress|offset] = ~pattern;

}

/* Check each location for the inverted pattern and zero it. */
for (pattern = 1, offset = 0; offset < numWords ; pattern++, offset++)

if (pBaseAddress|offset] |= ~pattern)

*ppFailAddr = &pBaseAddress|offset];
return O;

}

pBaseAddress]offset] = 0;
}

return 1;

6.4.2.4. Putting it all together

To make our discussion more concrete, let's consigeactical example. Suppose that we want tcatest
64 KB chunk of the DRAM starting at address OxO@B@Don the Arcom board. To do this, we would
call each of the three test routines in turn. loheegase, the first parameter is the base addrehe of
memory block. The width of the data bus is 32 laitg] there are a total of 64 KB to be tested
(corresponding to the right most 16 bits of theradsd bus).

If any of the memory test routines returns a zess|l immediately turn on the red LED to visually
indicate the error. Otherwise, after all threesddstive completed successfully, we will turn ongheen
LED. New LED functions have been added, which altbe/LEDs to be turned on or off.

In the event of an error, the test routine thdetawill return some information about the problem
encountered in the parameperilAddr . This information can be useful when communicatiitly a
hardware engineer about the nature of the probdiawever, the information returned by the functisn i
visible only if we are running the test progranaidebugger or emulator. Later we will look at aader
driver that will allow input from and output to argal port on the board. This can be an invaluadxé

for getting debug output from a program.

The best way to proceed is to assume the best,ldad/the test program, and let it run to completion
Then, if and only if the red LED comes on, you massamine the return codes and contents of the
memory to see which test failed and why.

Following is the programisain function, which performs a few LED initializatioasid then executes
the previously defined memory test functions:
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#include "memtest.h"

#include "led.h"
#define BASE_ADDRESS (datum *)(0x005 00000)
#define NUM_BYTES (0x10000)

/************************************************** *k% ** *%
*

* Function: main

*

* Description: Test a 64 KB block of DRAM.
*

* Notes:
*
* Returns: 0 on failure.

* 1 on success.
*

*kk *kk *kk *kk nnn/

int main(void)

{
datum *pFailAddr;
[* Configure the LED control pins. */
ledInit( );
/* Make sure all LEDs are off before we start t he memory test. */
ledOff(LED_GREEN | LED_YELLOW | LED_RED);
if ((memtestDataBus(BASE_ADDRESS, &pFailAddr) ! =1) ||
(memtestAddressBus(BASE_ADDRESS, NUM_BYTES, &pFailAddr) 1= 1) ||
(memtestDevice(BASE_ADDRESS, NUM_BYTES, &pF ailAddr) 1= 1))
ledOn(LED_RED);
return O;
}
else
ledOn(LED_GREEN);
return 1;
}
}

Unfortunately, it is not always possible to writemmory tests in a high-level language. For exanple,
requires the use of a stack. But a stack itseliireg working memory. This might be reasonable in a
system that has more than one memory device. FEongbe, you might create a stack in an area of

RAM that is already known to be working, while tagtanother memory device. In a common situation,
a small SRAM could be tested from assembly andthek could be created in this SRAM afterward.
Then a larger block of DRAM could be tested usirigst algorithm implemented in a high-level
language, such as the one just shown. If you caassatme enough working RAM for the stack and data
needs of the test program, you will need to rewvthiese memory test routines entirely in assembly
language.
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It might be possible to use the processor cachthéstack. Or if the processor
uses a link register, and variables are kept irstexg, it may still be possible to
s write tests in C without needing a stack.

...
%
=0 T,
.

= I

Another option is to run the memory test prograomfran in-circuit emulator. In this case, you could
choose to place the stack in an area of the enmigaen internal memory. By moving the emulator's
internal memory around in the target memory map,gauld systematically test each memory device
on the target.

u Running an emulator before you are assured thatthyanadware is working entail
— risk. If there is a physical (electrical/bus) famltyour system, the fault could
destroy your expensive ICE.

U7

You also need to be careful that the processoeisecdoes not fool you into thinking that the memory
tests falsely succeeded. For example, imaginethlegbrocessor stores the data that you intended to
write out to a particular memory location in itcha. When you read that memory location back, the
processor provides the cached value. In this gaseget a valid result regardless of whether tiges®

actual memory error. It is best to run the memesgs with the cache (at least the data cache)lddsab

The need for memory testing is perhaps most appdteimg product development, when the reliability
of the hardware and its design are still unprovalvever, memory is one of the most critical researc
in any embedded system, so it might also be ddsitabnclude a memory test in the final release of
your software. In that case, the memory test ahdrdtardware confidence tests should be run eaeh ti
the system is powered on or reset. Together, nitialitest suite forms a set of hardware diagrsstif
one or more of the diagnostics fail, a repair téghan can be called in to diagnose the problem and
repair or replace the faulty hardware.

6.5. Validating Memory Contents

It does not usually make sense to perform the dfypeemory testing described earlier when dealing
with ROM or hybrid memory devices. ROM devices aartve written at all, and hybrid devices usually
contain data or programs that you can't overwmealise you'd lose the information. However, it &hou
be clear that the same sorts of memory problem&ceur with these devices. A chip might be missing,
improperly inserted, or physically or electricatlgmaged, or there could be an electrical wiring
problem. Rather than just assuming that these natileomemory devices are functioning properly, you
would be better off having some way to confirm ttet device is working and that the data it corgtain
is valid. That's where checksums and cyclic rednogahecks come in.

6.5.1. Checksums

How can we tell whether the data or program starexdnonvolatile memory device is still valid? One
of the easiest ways is to compute a checksum addkteewhen it is known to be valid—prior to
programming the ROM, for example. Then, each time want to confirm the validity of the data, you
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need only recalculate the checksum and companesié to the previously computed value. If the two
checksums match, the data is assumed to be valida®fully selecting the checksum algorithm, we
can increase the probability that specific typesrodrs will be detected, while keeping the sizéhef
checksum, and the time required to check it, dawa teasonable size.

The simplest checksum algorithm is to add up &ldata bytes (or—if you prefer a 16-bit checksum—
words), discarding carries along the way. A notatpweakness of this algorithm is that if all oéth
data (including the stored checksum) is accidentaterwritten with 0s, this data corruption will be
undetectable; the sum of a large block of zeradsis zero. The simplest way to overcome this wes&kne
is to add a final step to the checksum algorithmaert the result. That way, if the data and checkate
somehow overwritten with Os, the test will fail bese the proper checksum would be OxFF.

Unfortunately, a simple sum-of-data checksum suscthia one fails to detect many of the most common
data errors. Clearly, if one bit of data is coragp{switched from 1 to O, or vice versa), the ewould

be detected. But what if two bits from the very esditnlumn” happened to be corrupted alternately (th
first switches from 1 to 0, the other from O to T} proper checksum does not change, and the error
would not be detected. If bit errors can occur, yalliprobably want to use a better checksum
algorithm. We'll see one of these in the next secti

After computing the expected checksum, you'll ne@dace to store it. One option is to compute the
checksum ahead of time and define it as a constahé routine that verifies the data. This metiwd
attractive to the programmer but has several sbiitegs. It is possible that the data—and, as dtresu
the expected checksum—might change during théntiéebf the product. This is particularly likely if
the data being tested is embedded software thiabevperiodically updated as bugs are fixed or new
features added.

A better idea is to store the checksum at somel figeation in nonvolatile memory. For example, you
might decide to use the very last location of trexmary device being verified. This makes insertibn o
the checksum easy: just compute the checksum aed ihinto the memory image prior to
programming the memory device. When you recalculsechecksum, simply skip over the location
that contains the expected result and compareutiterre checksum to the value stored there. Another
good place to store the checksum is in anotheraiatile memory device. Both of these solutions work
very well in practice.

6.5.2. Cyclic Redundancy Checks

A cyclic redundancy check (CRC) is a specific clserk algorithm that is designed to detect the most
common data errors. The theory behind the CRCite quathematical and beyond the scope of this
book. However, cyclic redundancy codes are fredy@seful in embedded applications that require the
storage or transmission of large blocks of dataat¥bilows is a brief explanation of the CRC tecjusd
and some source code that shows how it can be mnepieed in C. Thankfully, you don't need to
understand why CRCs detect data errors—or everntheyare implemented—to take advantage of
their ability to detect errors.

Here's a very brief explanation of the mathemati¢sen computing a CRC, think of the set of data as
very long string of 1s and Os (called the messdda} binary string is divided—in a rather peculiar
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way—by a smaller fixed binary string called the @&tor polynomial. The remainder of this binary
long division is the CRC checksum. By carefullyestihg the generator polynomial for certain dedeab
mathematical properties, you can use the resuttiegksum to detect most (but never all) errorsiwith
the message. The strongest of these generatorqmigls are able to detect all single- and double-bi
errors, and all odd-length strings of consecutiverebits. In addition, greater than 99.99 peradrdl|
burst errors—defined as a sequence of bits thabh@®rror at each end—can be detected. Together,
these types of errors account for a large percertéthe possible errors within any stored or
transmitted binary message.

Generator polynomials with the best error-detectiapabilities are frequently adopted as internation
standards. Two such standards are describ&dbie 6-4 Associated with each standard are its width
(in bits), the generator polynomial, a binary reygrgtation of the polynomial (called the divisor), a

initial value for the remainder, and a value tolesive OR operation (XOR) with the final remainder.

[ The divisor is simply a binary representationtaf toefficients of the generator polynomial, eath o
which is either 0 or 1. To make this even more asing, the highest-order coefficient of the germrat
polynomial (always a 1) is left out of the binagpresentation. For example, the polynomial in CRC16
has four nonzero coefficients. But the correspogthimary representation has only three 1s in ts(bi
15, 2, and 0).

Table 6-4. International standard CRC parameters

Parameters CRC16 CRC32
a‘igfﬁf“m SiZe 116 bits 32 bits
Generator XX+ X2+ X+ 3B+ + X+ X+ X X0+ X+ X+
polynomial 1 X+ xt+1
Divisor (polynomial)| 0x8005 0x04C11DB7
Initial remainder 0x0000 OXFFFFFFFF
Final XOR value 0x0000 OXFFFFFFFF

The following code can be used to compute any CRtQla that has a similar set of parameters. To
make this as easy as possible, we have defined ik CRC parameters as constants. To select the
CRC parameters according to the desired standefidedone (and only one) of the macarsci6or
CRC32

/* The CRC parameters. Currently configured for CR C16.*
#define CRC_NAME "CRC16"

#define POLYNOMIAL 0x8005

#define INITIAL_REMAINDER 0x0000

#define FINAL_XOR_VALUE 0x0000

#define REFLECT_DATA TRUE

#tdefine REFLECT_REMAINDER TRUE
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#define CHECK_VALUE 0xBB3D

/* The width of the CRC calculation and result. */
typedef uintl6_t crc_t;

#define WIDTH (8 * sizeof(crc _1)
#define TOPBIT (1 << (WIDTH - 1))

The functioncrcCompute  can be called over and over from your applicatdmoompute and verify CRC
checksums.

/ *k%k *kk *k% *k% F*hkkkkkkkkhkkkhhhkkk

*

* Function: crcCompute

*

* Description: Compute the CRC of a given message.

*

* Notes:

*

* Returns: The CRC of the message.

*

kkkkkkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkkhkkkkkkkkkkhkkkkkx *******************/
crc_t crcCompute(uint8_t const message[], uint32_t numBytes)

crc_t remainder = INITIAL_REMAINDER;
uint32_t byte;

int  nBit;

[* Perform modulo-2 division, a byte at a time. */

for (byte = 0; byte < numBytes; byte++)

{
[* Bring the next byte into the remainder. */
remainder "= (REFLECT_DATA(message[byte]) < < (WIDTH - 8));
/* Perform modulo-2 division, a bit at a ti me. */

for (nBit = 8; nBit > 0; nBit--)

/* Try to divide the current data bit. */
if (remainder & TOPBIT)
remainder = (remainder << 1) ~ POLY NOMIAL,;
else
remainder = (remainder << 1);
}

}

[* The final remainder is the CRC result. */
return (REFLECT_REMAINDER(remainder) * FINAL_XO R_VALUE);

}

A function namedrcFast that uses a lookup table to compute a CRC moiaezftly is included on
this book's web sitéh{tp://www.oreilly.com/catalog/embsysPrecomputing the remainders for all 256
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possible bytes of data in advancelit ) substantially reduces the amount of processimg dor

each bit. These intermediate results are storadaokup table. By doing it this way, the CRC daege
message can be computed a byte at a time rathebitay bit. This reduces the CRC calculation time
significantly.

An additional benefit of splitting the computatibatweercrcinit  andcrcFast is that thecrcinit

function need not be executed on the embeddedsyBtegractice, thercinit  function could either

be called during the target's initialization sequee(thus placing the CRC table in RAM), or it coblel

run ahead of time on your development computer thighresults stored in the target device's ROM. The
values in the table are then referenced over ard oycrcFast .

6.6. Using Flash Memory

Flash memory offers advantages over other typeseohory. Systems with flash memory can be
updated in the field to incorporate new featurebugy fixes discovered after the product has been
shipped. This can eliminate the need to ship tliebaick to the manufacturer for software upgrades.
There are several issues that need to be considéea upgrading software for units in the field.

Limit downtime

The timing of the upgrade should take place dudogntime. Since the unit will probably not
be able to function at its full capacity during tifggrade, you need to make sure that the unit is
not performing a critical task. The customer wdMe to dictate the most convenient time.

Power failure

How will the unit recover should power be removiedentionally or otherwise) while the
upgrade is taking place? If only a few bytes ofdpelication image have been programmed into
flash when the power is removed, you need a walgtermine that an error occurred and
prevent that code from executing. A solution maydmclude a loader (similar to a debug
monitor) that cannot be erased because it resideotected flash sectors. One of the boot tasks
for the loader is to check the flash memory fomhdvapplication image (i.e., for a valid
checksum). If a valid image is not present, theldvaneeds to know how to get a valid image
onto the board, via serial port, network, or sortieeomeans.

Another solution for power failures may be to ird#ua flash memory device that is large enough
to store two application images: the current image the old image. When new firmware is
available, the old image is overwritten with thewsoftware; the current image is left alone.
Only after the image has been programmed propedyvarified does it become the current
image. This technique ensures that the unit allagsa valid application image to execute
should something bad happen during the upgradesguoe.

Page 125



Programming Embedded Systems Second Edition

Upgrade code execution

From which memory chip will the software executeinlg the erase and programming of the
new software? The software that downloads the imaayebe able to run from flash memory;
however, the code to erase and reprogram a flapmaght need to be run from another
memory device.

Device timing requirements

It is important to understand the timing requiretsesf the program and erase cycles for the
particular flash device. It is best to make sut@aita is present (and validated) before starting
the programming cycle. You wouldn't want to sthe programming the device and then be
caught waiting for the rest of the new softwaredme in over a network connection. The device
may have timing limits for program and erase cytias cause the device to revert back to read
mode if these limits are exceeded. The flash dedicer would fail to write the data if this
occurs.

Software image validity

It is important to validate the image that is venittinto the flash. This will ensure that the
software is received into the unit correctly. THR@algorithm presented earlier in this chapter
may be sufficient to satisfy the validity of thegnpde software.

Security

If security of the image is an issue, you may neethd an algorithm to digitally sign and/or
encrypt the new software. The validation and de@ypof the software would then be
performed prior to programming the new software the flash memory.

6.6.1. Working with Flash Memory

From the programmer's viewpoint, flash is arguab&/most complicated memory device ever invented.
The hardware interface has improved somewhat sireceriginal devices were introduced in 1988, but
there is still a long way to go. Reading from flamsémory is fast and easy, as it should be. In fact,
reading data from a flash is not all that differotn reading from any other memory device. The
processor simply provides the address, and the myetewice returns the data stored at that location.
Most flash devices enter this type of "read” modmatically whenever the system is reset; no speci
initialization sequence is required to enable negudi
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Writing data to a flash is not as straightforwalrdio factors make writes difficult. Firstly, each mery
location must be erased before it can be rewritfehe old data is not erased, the result of thikew
operation will be a mathematical combination of dhet and new values.

The second thing that makes writes to a flashaliffiis that at least one sector, or block, ofdbeice
must be erased,; it is impossible to erase a simgke The size of an individual sector varies fro@vice
to device, but each sector is usually on the coflseveral kilobytes. In addition, within the same
device, different sector sizes may be used.

One other small difference is worth noting: theserand write cycles take longer than the read cycle

6.6.2. Flash Drivers

The process of erasing the old data and writinghehve varies from one manufacturer to another and is
usually rather complicated. These device progrargrmterfaces are so awkward that it is usually best
to add a layer of software to make the flash meneasier to use. If implemented, this hardware-
specific layer of software is usually called thest driver.

The purpose of a device driver in general is tehite details of a specific device from the appilica
software. In this case, the flash driver contamesdpecific method for writing to and erasing acefpe
flash device. The flash driver should present gfrmapplication programming interface (API)
consisting of the erase and write operations. Rédutise application software that need to modiftada
stored in flash memory simply call the driver aatlit handle the details. This allows the applmati
programmer to make high-level requests such aséitee block at address 0xD0O000000" or "Write a
block of data, beginning at address 0xD4000000stist driver routines also keep the device-specifi
code separate, so it can be easily modified iffe@rainanufacturer's flash device is later used.

Flash device manufacturers typically include dewvdeers on their web sites. If you're looking for
some example code, these web sites are a greattplatart. Some of the example code may cover the
very basic operations. In particular, these impletaigons may not handle any of the chip's possible
errors. What if the erase operation never compeYes/'ll want to think through the problems that
might arise when deploying your routines, and adorehecking if necessary. More robust
implementations may use a software time-out asckupa For example, if the flash device doesn't
respond within twice the maximum expected timesfaged in the device's datasheet), the routinedcoul
stop polling and indicate the error to the calteryser) in some way.

Another feature enhancement is to include codecfvies. If an erase or program cycle fails, théeco
could automatically retry the operation before meitug a failure to the calling application.

Another thing that people sometimes do with flagmmary is implement a small filesystem (similar to
the FIS portion of RedBoot). Because the flash mgrpoovides nonvolatile storage that is also
rewriteable, it can be thought of as similar to afthyer secondary storage system, such as a hagd dri
However, you must keep in mind the write cycle tation of flash as well. In the filesystem case, th
functions provided by the driver would be more-filéented. Standard filesystem functions such as
open, close ,read , andwrite provide a good starting point for the driver's APhe underlying
filesystem structure can be as simple or compleyoas system requires. However, a well-understood
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format such as the File Allocation Table (FAT) sture, used by DOS, is good enough for most
embedded projects.

Chapter 7. Peripherals

Each pizza glides into a slot like a circuit boantb a computer, clicks into place as the smart box
interfaces with the onboard system of the car. address of the customer is communicated to the car,
which computes and projects the optimal route tie@ads-up display.

—Neal Stephenson Snow Crash

In addition to the processor and memory, most ededystems contain a handful of other hardware
devices. Some of these devices are specific to eatiedded system's application domain, while
others—such as timers/counters and serial ports-usatil in a wide variety of systems. The most
commonly used devices are often included withinsidon@e chip as the processor and are called internal
or on-chip, peripherals. Hardware devices thateesutside the processor chip are, therefore,tedid
external peripherals. In this chapter, we'll disctiie most common software issues that arise when
interfacing to a peripheral of either type.

7.1. Control and Status Registers

An embedded processor interacts with a periphenatd through a set of control and status registers
These registers are part of the peripheral hardwack their locations, size, and individual measiacg
features of the peripheral. For example, the registithin a serial controller are very differerdrh
those in a timer. In this section, we'll descrilogvito manipulate the contents of these controlstatlis
registers directly from your C language programs.

As discussed i€hapter 2depending upon the design of the processor aadibperipheral devices are
located either in the processor's memory spacetbmwhe 1/0O space. By far, the most common of the
two types is memory-mapped peripherals, which areetplly easier to work with.

Memory-mapped control and status registers candmero look just like ordinary variables. To dasthi
you need simply declare a pointer to the registeblock of registers, and set the value of theewi
explicitly. Example code from previous chapters élasady demonstrated access to peripheral regjister
but let's take a closer look at the code. The GRelfisters in the PXA255 are memory-mapped so that
pointers to registers look just like a pointer ty ather integer variable. The following code deetthe
variablepGpio0Set as a pointer to @nt32_t —a 32-bit value representing the device's registard-
explicitly initializes the variable to the addrésstOE00018. From that point on, the pointer to the
register looks just like a pointer to any otheegsdr variable.

uint32_t *pGpio0Set = (uint32_t *)(0x40E00018);
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Note, however, one very important difference betwaevice registers and ordinary variables in local
memory. The contents of a device register can ahanipout the knowledge or intervention of your
program. That's because the register contentslsaba modified by the peripheral hardware. By
contrast, the contents of a variable in memory moli change unless your program modifies them
explicitly. For that reason, we say that the cotg@f a device register are volatile, or subjeatitange
without notice.

The keywordvolatile ~ should be used when declaring pointers to dewgssters. This warns the
compiler not to make any assumptions about thestatad at that address. For example, if the canpil
sees a write to the volatile location followed Ioypther write to that same location, it will not ase

that the first write is an unnecessary use of @msaecycles. And in the case of reads, it will agume
that a second read of the same location will retiiensame result, as it would with a variable.

Here's an example that uses the keywordtile  to warn the compiler about the GPIO Pin Output Set
register. The goal of this function is to write tredue of the register at two different times, &gy
setting two different GPIO pins high at differemhés:

uint32_t volatile *pGpio0Set = (uint32_t volatile * )(0x40E00018);

void gpioFunction(void)

{
/* Set GPIO pin 0 high. */
*pGpio0Set = 1; [* First write. */

delay_ms(1000);

/* Set GPIO pin 1 high. */
*pGpio0Set = 2; [* Second write ¥

If the volatile keyword was not used to declare the variabigooSet , the optimizer would be
permitted to change the operation of the code ekample, the compiler might remove the setting of
pGpio0Set to 1 in the previous code because the compilét saa any purpose to this setting. If the
compiler intervened in this manner, the GPIO pisild not operate as the software developer
intended. So theolatile ~ keyword instructs the optimization phase of thenpihation to leave every
change to a variable in place and to assume thatahable's contents cannot be predicted by earlie
states.

It would be wrong to interpret the declaration esta¢nt ofpGpio0Set to mean that the pointer itself is
volatile. In fact, the value of the varialepiooset will remain 0x40E00018 for the duration of the
program (unless it is changed somewhere else,uwnbep The data that is pointed to, rather, isestitip
change without notice. This is a very subtle pani thinking about it too much may confuse yowst Ju
remember that the location of a register is fixadugh its contents might not be. And if you use th
volatle  keyword, the compiler will assume the same.
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You might also notice that the pointer to the GP$&fister is declared as aisigned integer
Registers sometimes consist of several subfiefdbaimost all of the values are positive by deifomt
For these reasons, embedded programmers typicaEbnsigned integer types for peripheral registers.

Signed integers may be needed when reading safnphesn analog-to-digital
converter (A/D converter or ADC).

7.1.1. Bit Manipulation

The C language bitwise operators can be used t@gpolate the contents of registers. These operators
are& (AND), | (OR),~ (NOT),~ (XOR), << (left shift), and>> (right shift). The example code in the
following sections shows how to test, set, clead ®ggle individual bits via a pointer to a tingatus
register callegTimerStatus

In this section, we'll number the bits the way ymed to think of them when creating masks. Thd-eas
significant bit is called bit 0, and it can be reggnted in a hexadecimal mask as 0x01; the most-
significant bit in a byte is called bit 7, and #rcbe represented in a hexadecimal mask as 0x80.

7.1.1.1. Testing bits

The following code tests to see whether bit 3 igrséhe timer status register using theperator:

if (*pTimerStatus & 0x08)

/* Do something here... */

}

In this case, we'll imagine that the value in iheet status register, contained in the variable
pTimerStatus , iS O0x4C; thes operator performs an AND operation with 0x08. Biperation looks like
this:

01001100 (0x4C)
AND (&)
0000100 0 (0x08)

0000100 0 (0x08)

Because the proper bit is set in the registerctite enters thie statement.
7.1.1.2. Setting bits

To set bit 4, thé operator is used as shown in the following code:
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*pTimerStatus |= 0x10;

resulting in:

01001100 (0x4C)
OR (])
00010000 (0x10)

01011100 (0x5C)

7.1.1.3. Clearing bits

The code to clear bit 2 uses thand-~ operators as follows:

*pTimerStatus &= ~(0x04);

For this operation, the inverse of 0x04 equals QXHie&= operator sets bit 2 of the timer status register
to 0, while leaving all other bits unchanged. Tperation looks like this:

01011100 (0x5C)
AND (&)
NOT(~)11111011 (OXFB)

01011000 (0x58)

Note that all bits in the register remain the saxeept for the bit we want to clear.

7.1.1.4. Toggling bits

It is sometimes useful to change a bit back anith féfor instance, you may want to blink an LED on
and off. You may also want to toggle a bit back @orth, without having to check it first, and e>xqtly
set or clear it. Toggling is done in C with theperator. Here is the code to toggle bit 7 intimer
status register:

*pTimerStatus "= 0x80;

This results in the following operation:

01011000 (0x58)
XOR ()
10000000 (0x80)

11011000 (0xD8)
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7.1.1.5. Shifting bits

Another type of useful bitwise operation is a shr example, consider what happens to the vdlue o
the 8-bit unsigned integettCount that contains OXAC and is shifted right by 1 Biade
demonstrating a right shift follows:

bitCount >>=1;

This results in:

10101100 (0xXAC)
>>py 1

01010110 (0x56)

In this case, a 0 is shifted in from the left. Hoee the C standard also allows the most signifibérto
be repeated when the variable is signed. We recowhiy@u use unsigned integers for variables on
which you perform bit operations so that you wik inave to worry about the different results on
different compilers.

Assume the value of the 8-bit unsigned integi®ount is again OXAC and is shifted left by 2 bits:

bitCount <<= 2;

This results in:

10101100 (0xXAC)
<< by 2

10110000 (0xBO)

One reason to use a shift is if you want to perfamoperation on each bit of a register in turny gan
create a bitmask (discussed in the next sectioth) vbit set or clear and shift it SO you can ofeecm
the individual bits of the register.

7.1.1.6. Bitmasks
A bitmask is a constant often used along with @ereperators to manipulate one or more bits in a
larger integer field. A bitmask is a constant bynpattern, such as the 16-bit hexadecimal literal

OxO0FF, that can be used to mask specific bitsn&ks can be used with bitwise operators in oaler t
set, test, clear, and toggle bits. Following araneple bitmasks for the timer status register:
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#define TIMER_COMPLETE (0x08)
#define TIMER_ENABLE (0XCO)

The bitmaskgIMER_COMPLETERINATIMER_ENABLEare descriptive names that correspond to spdutic
in a peripheral's register. Using a symbolic (etdefine ) bitmask allows you to write code that is more
descriptive and almost self-commented. By replatiexpadecimal literals with words, the definition
makes it easier for you (or someone else) to utalgighe code at a later time. Here is an exanf@e o
bitwise operation involving a bitmask:

if (*pTimerStatus & TIMER_COMPLETE)

/* Do something here... */

}

Bitmask Macros

Here is a handy macro that will help you avoid &ypolong hexadecimal literals:

#define BIT(X) (1 << (X))

To define a specific register bit in a bitmask,lsas bit 22, use the macro as follows:

#define TIMER_STATUS BIT(22)

7.1.1.7. Bitfields

A bitfield is a field of one or more bits withinlarger integer value. Bitfields are useful for bit
manipulations and are supported withigtract by C language compilers.

struct

{
uint8_t bit0 :
uint8_t bitl :
uint8_t bit2 :
uint8_t bit3 : 1;
uint8_t nibble : 4;

} foo;

Ll ol sl s

Bits within a bitfield can be individually set, ted, cleared, and toggled without affecting théestd
the other bits outside the bitfield.

To test bits using the bitfield, use code suchhaddllowing:
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if (f00.bit0)

{
[* Do other stuff. */

}

Here's how to test a wider field (such as two hitshg a bitfield:
if (foo.nibble == 0x03)

[* Do other stuff. */
}

To set a bit using a bitfield, use this code:

foo.bitl = 1;

And use code such as the following to set multigie in a bitfield:

foo.nibble = 0xC;

To clear a bit using the bitfield, use this code:

foo.bit2 = 0;

And to toggle a bit using the bitfield, use this:

foo.bit3 = ~foo.bit3; /* or !foo.bit3 */

There are some issues you must be aware of shouldacide to use bitfields. Bitfields are not
portable; some compilers start from the least Sigant bit, while others start from the most sigraht
bit. In some cases, the compiler may require eimgiase bitfield within a union; doing this makéeet

bitfield code portable across ANSI C compilers.

In the following example, we use a union to conthmbitfield. In addition to making the bitfieldde

portable, the union provides wider register access.

union
{
uint8_t byte;
struct
{
uint8_t bit0 :1;
uint8_t bitl :1;
uint8_t bit2 :1
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uint8_t bit3 :1;
uint8_t nibble : 4;
} bits;
} foo;

Instead of accessing only individual bits, the segi can be written to as a whole. For example, the
bitfield union, along with bitmasks, can be useftilen initializing a register, as shown here:

foo.byte = (TIMER_COMPLETE | TIMER_ENABLE);

while individual bits are still accessible, as shdwere:

foo.bits.bit2 = 1;

Bitmasks are more efficient than bitfields in certiaastances. Specifically, a bitmask is usualletter
way to initialize several bits in a register. Fgample, the following code initializes the timeatsis
register by setting the two bits denoted by therogand clearing all others:

*pTimerStatus = (TIMER_COMPLETE | TIMER_ENABLE);

Setting and clearing bits using a bitfield is nstéa than using a bitmask; with some compilersait be
slower to use a bitfield. One benefit of usingiblts is that individual bitfields may be declared
volatle  orconst . This is useful when a register is writeable loritains a few read-only bits.

Unique Registers

Some registers (or bits within a register) candaalronly or write-only. For write-only
registers, read-modify-write operations (such=a.=, and*=) cannot be used. In this case, a
shadow copy of the register's contents should likihe variable in RAM to maintain the
current state of the write-only register. An exaenpl a write-only register using a shadow
copytimerRegVvalue  follows:

[* Initialize timer write-only register. */
timerRegValue = TIMER_INTERRUPT;
*pTimerReg = timerRegValue;

After the shadow copy and timer register have heiialized, subsequent writes to the
register are performed by first modifying the shadmpytimerRegvalue and then writing
the new value to the register. For example:

timerRegValue |= TIMER_ENABLE;
*pTimerReg = timerRegValue;
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7.1.2. Struct Overlays

In embedded systems featuring memory-mapped l/@ek&\t is sometimes useful to overlay a C struct
onto each peripheral's control and status regidBensefits of struct overlays are that you can raad

write through a pointer to the struct, the registadescribed nicely by the struct, code can be &ejan,
and the compiler does the address constructioarapite time.

The following example code shows a struct overtayaftimer peripheral. If a peripheral's registhos
not align correctly, reserved members can be irdud the struct. Thus, in the following example, a
extra field that you'll never refer to is includatoffset 4 so that thentrol  field lies properly at offset
6.

typedef struct
{

uintl6_t count; [* Offset 0 */
uintl6_t maxCount; /* Offset 2 */
uintl6_t _reservedl; [* Offset 4 */
uintl6_t control; [* Offset 6 */

} volatile timer _t;

timer_t *pTimer = (timer_t *)(OXABCD0123);

Note that the individual fields of a struct, as h&d the entire struct, can be
declared volatile.

.
TN
Fee |

= I

-
40

When you use a struct overlay to access registerssompiler constructs the actual memory-mapped
I/O addresses. The members ofdiwer_t  struct defined in the previous example have tloress
offsets shown iMable 7-1

Table 7-1. Timer peripheral struct address offsets
Struct member Offset
count 0x00
maxCount 0x02
_reservedl 0x04
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Table 7-1. Timer peripheral struct address offsets

Struct member Offset

control

0x06

It is very important to be careful when creatingfraict overlay to ensure that the sizes and adelexs
the underlying peripheral's registers map correctly

The bitwise operators shown earlier to test, $egrcand toggle bits can also be used with atstruc
overlay. The following code shows how to accesgither peripheral's registers using the struct
overlay. Here's the code for testing bits:

if (pTimer->control & 0x08)

/* Do something here... */

}

Here's the code for setting bits:

pTimer->control |= 0x10;

Here's the code for clearing bits:

pTimer->control &= ~(0x04);

And here's the code for toggling bits:

pTimer->control ~= 0x80;

7.2. The Device Driver Philosophy

When it comes to designing device drivers, alwaygsi$ on one easily stated goal: hide the hardware
completely. This hiding of the hardware is somesroalled hardware abstraction. When you're
finished, you want the device driver module to e dnly piece of software in the entire system that
reads and/or writes that particular device's comtnd status registers directly. In addition, & tevice
generates any interrupts, the interrupt servicémeuhat responds to them should be an integraigba
the device driver. The device driver can then preaegeneric interface to higher software levels to
access the device. This eliminates the need foappécation software to include any device-specifi
software. In this section, we'll explain why thisilpsophy is universally accepted and how it can be
achieved.
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Attempts to hide the hardware completely are difficAny programming interface you select will
reflect the broad features of the device. Thatlsetexpected. The goal should be to create a
programming interface that would not need to bengkd if the underlying peripheral were replaced
with another in its general class. For exampleflath memory devices share the concepts of sectors
(though the sector size may differ between chipksg following programming interface provided for a
flash driver should work with any flash memory devi

void flashErase(uint32_t sector);
void flashWrite(uint32_t offset, uint8_t *pSrcAddr, uint32_t numBytes);

These two calls closely resemble the way all flelsips work in regard to reads and writes. An erase
operation can be performed only on an entire se€oce erased, individual bytes or words can be
rewritten. But the interfaces here hide the sped&#atures of the flash device and its functionsifr
higher software levels, as desired.

Device drivers for embedded systems are quiteréifitefrom their PC counterparts. In a general-
purpose computer, the core of the operating sysehstinct from the device drivers, which are ofte
written by people other than the application depets. The operating system offers an interface that
drivers must adhere to, while the rest of the sysiad applications depend on drivers doing so. For
example, Microsoft's operating systems imposetsemguirements on the software interface to a
network card. The device driver for a particulatwak card must conform to this software interface,
regardless of the features and capabilities otittaerlying hardware. Application programs that wiant
use the network card are forced to use the netwgikPI provided by the operating system and don't
have direct access to the card itself. In this ddsegoal of hiding the hardware completely idlgas
met.

By contrast, the application software in an embddistem can easily access the hardware. In fact,
because all of the software is generally linkecetbgr into a single binary image, little distinctiis
made between the application software, operatistesy, and device drivers. Drawing these lines and
enforcing hardware access restrictions are puhalyeasponsibilities of the software developershBot
are design decisions that the developers must musdg make. In other words, the implementers of
embedded software can more easily cheat on theaeftdesign than can their nonembedded peers.

The benefits of good device driver design are floide

- Because of the modularity, the structure of theal/software is easier to understand. In
addition, it is easier to add or modify featureshaf overall application as it evolves and
matures, even in deployed units.

- Because there is only one module that ever intedictctly with the peripheral's registers, the
state of the hardware device can be more accurassled.

« Software changes that result from hardware chaagelcalized to the device driver, thereby
making the software more portable.

Each of these benefits can and will help to redbedotal number of bugs in your embedded software

and enhance the reusability of your code acrodermsgs But you have to be willing to put in a bit of
extra effort up front, at design time, in orderé¢alize the savings.
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Figure 7-1shows the basic software layers for an embedds&dsy As shown in this figure, a device
driver sits logically just above the hardware aodtains the "knowledge" of how to operate that
particular piece of hardware.

Figure 7-1. Embedded system software layers

Application

Device Driver

Hardware

Because the device driver contains the code tcatpéne hardware, the application software does not
need to be complicated by these details. For exangaking back at the Blinking LED program, the
file led.cis the LED device driver. This file contains alltbe knowledge about how to initialize and
operate the LED on the Arcom board. The LED dediteer provides an API consisting lefilnit
andledToggle . The application ilink.c uses this API to toggle the LED. The applicatioes not

need to concern itself with the operation of GPé@isters in the PXA255 in order to get the LED to
perform a certain task.

The philosophy of hiding all hardware specifics améractions within the device driver usually
consists of the five components in the followirgl.liTo make driver implementation as simple and
incremental as possible, these elements shouléveaped in the order they are presented.

1. Aninterface to the control and status registers.

2. For a commonly used memory-mapped /O, the fiegh gt the driver development process is to
create a representation of the memory-mapped eggist your device. This usually involves
studying the databook for the peripheral and angaditable of the control and status registers
and their offsets. The method for representingctivdrol and status registers can be whatever
style you feel comfortable implementing.

3. Variables to track the current state of the phygead logical) devices.

4. The second step in the driver development procesfigure out what state variables you will
need. For example, we'll probably need to defin@bées to remind us whether the hardware
has been initialized. Write-only registers are @eod candidates for state variables.
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5. Some device drivers create more than one softwariea for the underlying hardware. The
additional instance is a purely logical device tlsamplemented over the top of the basic
peripheral hardware. Think about a timer, for exemip is easy to imagine that more than one
software timer could be created from a single harévtimer/counter unit. The timer/counter
unit would be configured to generate a periodicklick, say, every millisecond, and the device
driver would then manage a set of software timéksadous lengths by maintaining state
information for each.

A routine to initialize the hardware to a knowntsta

Once you know how you'll track the state of thegitgl (and logical) device, you can begin to

write the functions that actually interact with asahtrol the hardware. It is probably best to

begin with the hardware initialization routine. Ylboneed that one first anyway, and it's a good
way to get familiar with device interaction.

8. An API for users of the device driver.

9. After you've successfully initialized the deviceuycan start adding other functionality to the
driver. A first step in the design for the devicevdr is to settle on the names and purposes of the
various routines, as well as their respective patars and return values. After this step, all shat'
left to do is implement and test each API functidfe'll see examples of such routines in the
next section.

10. Interrupt service routines.

11.1t's best to design, implement, and test most @fdivice driver routines before enabling
interrupts for the first time. Locating the sounofanterrupt-related problems can be quite
challenging. If you add possible bugs presenténdther driver modules to the mix, it could
even become impossible. It's far better to usangptb get the guts of the driver working. That
way you'll know how the device works (and thasitndeed working) when you start looking for
the source of your interrupt problems—and theré¢ alhost certainly be problems.

No

7.2.1. A Serial Device Driver

The device driver example that we're about to disesi designed to control a serial port. The hardwa
for this device driver uses a UART (which is pronoed "you-art" and stands for Universal
Asynchronous Receiver Transmitter) peripheral dosthwithin the PXA255 processor. A UART is a
component that receives and transmits asynchroseried data. Asyncrhonous means that data can
come at unexpected intervals, similar to the irfpun a keyboard. A UART accepts a parallel byte
from the processor. This byte is serialized, arahdat is transmitted at the appropriate time. Ré&oa
works in the reverse.

The PXA255 processor has four on-chip UARTSs. Fa éixample, we will use the Full Function UART
(FFUART), which is connected to the Arcom board3NML port. (Note that this is the same COM port
used on the Arcom board by RedBoot, eliminatingribed to switch cables. The FFUART registers
start at address 0x40100000.)

Before writing any software for the serial devicever, you should understand the hardware block
diagram—that is, how the signals go from the pestphto the outside world and back. This typically
includes looking over the relavant portion of tebematic and gathering the datasheets for therélifte
ICs. A block diagram for the serial port is showrrigure 7-2
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Figure 7-2. Arcom board serial port block diagram

RS-232 (OM1DB-9
Transceiver Connector

Processor

UART
Peripheral

As shown inFigure 7-2 the PXA255 UART connects to the RS-232 Transcewhich then connects
to the COM1 DB-9 connector on the Arcom board. hasceiver converts the voltage level that the
Arcom board's processor uses to RS-232 voltagdslelkis allows the Arcom board's UART to
communicate with a PC via its serial port.

The next step is to understand how the particudaipperal works. What ICs need to be programmed in
order to control the peripheral? For this serialeit we only need to focus on the UART peripheral
registers in the processor. The information abloe$é registers is contained in the processor's
documentation.

For information about the PXA255 processor UARTeak the PXA255 Processor Developer's
Manual—specifically, Section 10: UARTSs. Informatiahout interrupts is contained in Section 4.2:
Interrupt Controller. While reading this documeitdaf the goal is to get an understanding of several
different concepts, including:

« The register structure for controlling the perigterthat is, how to set up communications and
how to get data into and out of the peripheral

- The addresses of the control and status registers

« The method that will be used for the periphergeration (hamely, polling or interrupts)

« If using interrupts, what conditions can causermigs, how the software driver is informed
when an interrupt occurs, and how the interrupicisnowledged

Get a firm grasp on what the device driver will tiée do to get the peripheral to perform its tagthiw
the system. Once these initial steps are completecan move on to the task of writing the device
driver software.

7.2.1.1. Register interface

The first step for the serial device driver is &dide the register interface. For this example use a
struct overlay for the UART registers, which arenmeey-mapped. The struct overlagt t , is shown
here:

typedef struct

uint32_t data;
uint32_t interruptEnable;
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uint32_t interruptStatus;
uint32_t uartConfig;
uint32_t pinConfig;
uint32_t uartStatus;
uint32_t pinStatus;

} volatile uart_t;

The variablesSerialPort  is used to access the UART registers at addref3100000 and is defined
as:

uart_t *pSerialPort = (uart_t *)(0x40100000);

7.2.1.2. State variables

Next, we define variables to track the currentestdtthe hardware. A struct of serial driver partare
calledserialparams _t is defined. The global variabiserialParams  is used in the serial device
driver to encapsulate and help organize the cordigan parameters.

The variablevinitialized is used in the serial initialization routine tceketrack of the hardware
configuration state. You may notice that in thédaing code, enumerated types are defined for the
parity (parity_t ), data bitsdatabits_t ), and stop bitssfopbits_t ). The enumerators are set to
bitmask values in the UART configuration registEne enumerations simplify the UART configuration
programming and help make the code more readable.

/* UART Config Register (LCR) Bit Descriptions */

#define DATABITS _LENGTH_O (0x01)
#define DATABITS _LENGTH_1 (0x02)
#define STOP_BITS (0Ox04)
#define PARITY_ENABLE (0x08)
#define EVEN_PARITY_ENABLE (0x10)
typedef enum {PARITY_NONE, PARITY_ODD = PARITY_ENAB LE,
PARITY_EVEN = (PARITY_ENABLE | EVEN_P ARITY_ENABLE)} parity_t;
typedef enum {DATA_5, DATA_6 = DATABITS_LENGTH_O, D ATA_7 = DATABITS_LENGTH_1,
DATA_8 = (DATABITS_LENGTH_O | DATABIT S_LENGTH_1)} databits_t;
typedef enum {STOP_1, STOP_2 = STOP_BITS} stopbits__ t;

typedef struct

uint32_t dataBits;
uint32_t stopBits;
uint32_t baudRate;
parity _t parity;

} serialparams_t;

serialparams_t gSerialParams;
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7.2.1.3. Initialization routine

The initialization routineeriallnit sets up the default communication parameterseérial device
driver. The UART registers are programmed in thein@serialConfig  , which gets passed in the

gSerialParams  variable. The variableinitialized

only once.

/**************************************************

*

* Function: seriallnit

*

* Description: Initialize the serial port UART.

*

* Notes: This function is specific to the Ar
* Default communication parameters ar
* this function.

*

* Returns:  None.

*

*k%k *kk *k% *k%

void seriallnit(void)

{
static int binitialized = FALSE;

[* Initialize the UART only once. */

if (bInitialized == FALSE)

{
[* Set the communication parameters. */
gSerialParams.baudRate = 115200;
gSerialParams.dataBits = DATA_8;
gSerialParams.parity = PARITY_NONE;
gSerialParams.stopBits = STOP_1;

serialConfig(&gSerialParams);

blnitialized = TRUE;

7.2.1.4. Device driver API

is used to ensure that the serial port is conéidur

*k% *k*k

com board.
e setin

nnn/

Now additional functionality can be added by defmbther serial device driver API functions. A aéri
device driver API should have functions to send matgive characters. For sending characters, the
functionserialPutChar  is used; for receiving charactesssialGetChar  is used.
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The serial device driver API functiarialPutChar ~ waits until the transmitter is ready and then send
a single character via the serial port. Transngtihndone by writing to the UART data register. The
following code shows theerialPutChar  function.

#define TRANSMITTER_EMPTY (0x40)

/ *k%k *kk *k% *k% *k%k

*

* Function: serialPutChar

*

* Description: Send a character via the serial por t.

*

* Notes: This function is specific to the Ar com board.

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void serialPutChar(char outputChar)

{

[* Wait until the transmitter is ready for the next character. */
while ((pSerialPort->uartStatus & TRANSMITTER_E MPTY) == 0)

[* Send the character via the serial port. */
pSerialPort->data = outputChar;

The serial device driver API functiaarialGetChar ~ waits until a character is received and then reads
the character from the serial port. To determinetiver a character has been received, the data bé&ady
is checked in the UART status register. The charaetceived is returned to the calling functionrd-is
theserialGetChar ~ function:

#define DATA_READY (0x01)

/ *k%k *kk *k% *k% *k%k

*

* Function: serialGetChar

*

* Description: Get a character from the serial por t.

*

* Notes: This function is specific to the Ar com board.

*

* Returns:  The character received from the ser ial port.
:************************************************* *kk *k% x/

char serialGetChar(void)

[* Wait for the next character to arrive. */
while ((pSerialPort->uartStatus & DATA_READY) = =0)

return pSerialPort->data;

}
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Because this serial device driver does not userupts, the final step in the device driver philpkg—
implementing device driver interrupt service roasna-is skipped.

7.2.2. Testing the Serial Device Driver

Now that the serial device driver is implemented,veed to verify that it operates correctly. It is
important to check the individual functions of yawew API before integrating the driver into theteys
software.

To test the serial device driver, the Arcom boa@3¥MV1 port must be connected to a PC's serial port.
After making that connection, start a terminal peog, such as HyperTerminal or minicom, on the PC.
(The serial port parameters should not need tdhbaged, because the default serial device driver
parameters are the same ones used by RedBoot.)

Themain function demonstrates how to exercise the seeiog driver's functionality. You might
notice that this software has the beginnings afrarnand-line interface—an indispensable tool
commonly implemented in embedded systems.

First, the serial device driver is initialized bgllang seriallnit . Then several characters are output on
the PC's serial port to test theialPutChar ~ function. If the serial device driver is operatprgperly,
you should see the messaget output on your PC's terminal screen.

Next, awhile loop is entered that checks whether a characteb&an received by calling
serialGetChar . If a character comes into the serial port, @éoed back. If the user entars the
PC's terminal program, the program exits; otherwttse loop continues and checks for another
incoming character.

#include "serial.h"

/************************************************** *k% ** *%

*

* Function: main

*

* Description: Exercise the serial device driver.

*

* Notes:

*

* Returns:  This routine contains an infinite | oop, which can
* be exited by entering g.

*

*kk *kk *kk *kk nnn/

int main(void)
char rcvChar = 0;

[* Configure the UART for the serial driver. */
seriallnit( );
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serialPutChar('s');
serialPutChar('t");
serialPutChar('a’);
serialPutChar('r);
serialPutChar('t");
serialPutChar('\\r);
serialPutChar(\\n");

while (rcvChar !'="'q")
{

/* Wait for an incoming character. */
rcvChar = serialGetChar( );

/* Echo the character back along with a car riage return and line feed. */
serialPutChar(rcvChar);

serialPutChar(\\r");

serialPutChar(\\n');

}

return O;

7.2.3. Extending the Functionality of the Serial Déce Driver

Although the serial driver is very basic, it do@vé core functionality that you can build upon to
develop a more robust (and more useful) prograns dévice driver provides a platform for learning
about the operation of UARTSs. Following is a li§possible extensions you can use to expand the
functionality of this driver. Keep these in mind father drivers you develop as well.

Selectable configuration

You can changeerialinit to take a parameter that allows the calling fuorcto specify the
initial communication parameters, such as baud fatehe serial port.

Error checking

It is important for the device driver to do adegueatror checking. Another enhancement would
be to define error codes (such as parameter éaodware error, etc.) for the device driver API.
The functions in the device driver would then usese error codes to return status from the
attempted operation. This allows the higher-lewfivgare to take note of failures and/or retry.
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Additional APIs
Adding serialGetStr andserialPutStr (which would require buffering of the receive and

transmit data) might be useful. The implementatibthe string functions could make use of the
serialGetChar ~ andserialPutChar  functions, if it were reasonably efficient to dm s

FIFO usage

Typically, UARTSs contain FIFOs for the data receiand transmitted. Using these FIFOs adds
buffering to both the receive and transmit chanmabking the UART driver more robust.

Interrupts

Implementing UART interrupts for reception and samssion is usually better than using
polling. For example, in the functiaarialGetChar , using interrupts would eliminate the need
for the driver to sit in a loop waiting for an imoang character. The application software is thus
able to perform other work while waiting for datalte received.

7.3. Device Driver Design

Most embedded systems have more than one deviee .dn fact, sometimes there might be dozens. As
your experience grows, you will need to understiwedvay different devices in the system intera¢chwi
each other. You will also have to consider howapplication software will use the device drivertisat

you can provide an adequate API.

You will need to have a good understanding of therall software design and be aware of possible

issues in the system. Getting input from multimlarses can lead to a better design. Here are smas a
to consider when designing a software architedhatincludes various device drivers:

Interrupt priorities

If interrupts are used for the device drivers syatem, you need to determine and set
appropriate priority levels.

Complete requirements

You need to be aware of the requirements of thiewsuperipherals in the system. You don't
want to design and implement your software in ameathat unknowingly handicaps the
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peripheral from operating as it is intended. This cause such major problems that the product
might not be usable until the system functionspesiied. It's a good idea to use software
design reviews to flush out any potential problehz might have been overlooked by an
individual developer.

Resource usage

It is important to understand what resources acessary for each device driver. For example,
imagine designing an Ethernet device driver instesy with a very limited amount of memory.
This limitation would affect the buffering schemmeglemented in the Ethernet driver. The driver
might accommodate the storage of only a few incgmpiackets, which would affect the
throughput of the Ethernet interface.

Resource sharing

Beware of possible situations where multiple deviceers need to access common hardware
(such as I/O pins) or common memory. This can nitadtéficult to track down bugs if the
sharing scheme is not thoroughly thought out aloéaidhe. We will take a look at mechanisms
for resource sharing in Chapt&andl10.

Chapter 8. Interrupts

And, as Miss [Florence] Nightingale was so vehemgdntcomplain—"women never have an half
hour... that they can call their own"—she was alsvaerrupted.

—Virginia Woolf A Room of One's Own

In this chapter, we'll take a look at interruptssephisticated way of managing relationships with
external devices. Interrupts are an important dspfeembedded software development and one that
programmers need to study carefully in order taterefficient applications. The start of this cleapt
gives an introduction to interrupts and differenaacteristics associated with them. It is impdrtan
understand what happens when an interrupt event®end how the interrupt is processed. Although
the implementation of interrupts is processor-dpecenuch of the material in this chapter appliesi
processors. Finally, we will expand on the Blinkirl§D example by using an interrupt found in
practically all processors.

8.1. Overview

An interrupt can be used to signal the procesgsoalfsorts of events—for example, because data has
arrived and can be read, a user flipped a switch,specific amount of time has elapsed.
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Interrupts allow developers to separate time-@itaperations from the main program to ensure ey

processed in a prioritized manner. Because intesrang asynchronous events, they can ha
time during the main program'’s execution.

Figure 8-1shows two alternative wiring diagrams of periptemnnected to the processor i
pins.

Figure 8-1. Interrupt wiring

ppen at any
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Peripheral A Peripheral B

INT O
INT1
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Interrupt Controller
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INT 3
INT
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Interrupts and Related Events

The term interrupt is used to cover several difiefeardware features. All of these

mechanisms are used to divert processing of the pragram in order to handle an event,
but they are invoked in different circumstances aeed to be treated by a programmer in
different ways, so a brief listing is useful totdiguish them. Note that certain processors

may define these terms differently.

Exception

A detected error condition sometimes called a sari@nterrupt. For example, performing
divide by zero causes an exception. A softwareriape is also used by a program to perfo
various debug functions, such as breakpoints. Hiarepare synchronous events.

Interrupt

w

rm
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An asynchronous electrical signal asserted by iplperal to the processor.
Trap

An interruption of a program that is caused byghecessor's internal hardware. Traps are
synchronous events.

Asynchronous events are not related in time toahgr event known within the system.

Synchronous events occur as the result of anottent evithin the system. For instance, a
signal indicating that somebody has opened a dothret room is asynchronous, whereas an
exception caused by dividing by zero is synchronous

In this chapter, we focus on interrupts in the osBr sense.

Figure 8-1a) shows peripherals connected directly to therrapt pins of the processor. In this case, the
processor contains an interrupt controller on-¢bipanage and process incoming interrupts. The
PXA255 has an internal interrupt controller.

Figure 8-1b) shows the two peripherals connected to an eakénterrupt controller device. An
interrupt controller multiplexes several input mtgts into a single output interrupt. The coneokhlso
allows control over these individual input intertsifor disabling them, prioritizing them, and showi
which are active.

Because many embedded processors contain periploerghip, the interrupts from these peripherals
are also routed to the interrupt controller wittiie main processor. Sometimes more interrupts are
required in a system than there are interrupt inise processor. For these situations, peripheeais
share an interrupt. The software must then detexrmvimch device caused the interrupt.

Interrupts can be either maskable or nonmaskabdeskible interrupts can be disabled and enabled by
software. Nonmaskable interrupts (NMI) are critica€rrupts, such as a power failure or reset, that
cannot be disabled by software.

A complete listing of the interrupts in your systean be constructed from information in the refegen
manuals for your processor and board. For exartipeinterrupts supported by the PXA255 processor
are detailed in the PXA255 Processor Developersudi A partial list of the supported interrupts fo
the PXA255 is shown ifiable 8-1 We will take a look at what the interrupt numbegans shortly.

Table 8-1. Partial interrupt list for PXA255 procesr

Interrupt number Interrupt source

8 GPIO Pin 0

9 GPIO Pin 1
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Table 8-1. Partial interrupt list for PXA255 proceer
Interrupt number Interrupt source
11 USB
26 Timer O
27 Timer 1
28 Timer 2

8.1.1. Priorities

Because interrupts are asynchronous events, theselba a way for the processor to determine which
interrupt to deal with first should multiple intapts happen simultaneously. The processor defimes a
interrupt priority for all of the interrupts and@eptions it supports. The interrupt priorities fimend in
the processor's documentation.

For example, the ARM processor supports six typa@sterrupts and exceptions: The priorities of
these interrupts and exceptions are showiainle 8-2 This table is contained in the XScale
Microarchitecture User's Manual.

[T ARMV6 also includes an imprecise abort exceptidarity between IRQ and prefetch abort.

Table 8-2. ARM processor exception and interruptgities
Priority Exception/interrupt source
1 (highest) Reset
2 Data abort
3 Fast Interrupt Request (FIQ)
4 Interrupt Request (IRQ)
5 Prefetch abort
6 (lowest) Undefined instruction or software intgatr

Typically, when an interrupt occurs, a processeablies all interrupts at the same- or lower-pryorit
levels. If multiple interrupts are waiting to beopessed or are pending, the priority associatel tvé
interrupts determines the order in which they aecated.
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The method for handling interrupts at differenbpities is very processor-specific. The followirmxt
describes some scenarios for handling interrupd#ffatrent priorities.

When a higher-priority interrupt occurs while a kEmpriority interrupt is being processed, the
processing of the lower-priority interrupt is susged and the higher-priority interrupt is handi@dce
the higher-priority interrupt completes, the praieg of the lower-priority interrupt continues. $hs
called interrupt nesting.

If a lower-priority interrupt occurs while the pexsor is handling a higher-priority interrupt, tbever-
priority interrupt is left pending until the highpriority interrupt finishes executing.

When an interrupt occurs at the same priority agriterrupt currently being processed, the intdrrup
currently being processed is allowed to finish. Ttee processing of the next interrupt startshis t
case, interrupt nesting can also occur if the aiilyeexecuting interrupt reenables interrupts @bitvn
priority level. In other words, an interrupt catoal itself to be interrupted by other interruptatiare at
the same priority level.

g Be careful when nesting interrupts. Additional thiiught must go into the sizinp
— of the stack, because each ISR that is interrupigest have its register state saved
on the stack. This could lead to a stack overflow.

The interrupt priority is set by hardware designsbftware, or, in some cases, by a combinatiaghef
two. If we look back at the wiring diagram lilgure 8-1a), we see that the processor has four interrupt
pins (INTO through INT3). For this example, wedlsame the processor gives INTO the highest priority
followed by INT1, INT2, and INT3. The hardware dg®r must wire the interrupt pins so that the
correct interrupt priorities are assigned to theotess peripheral interrupts. In this case, thermigt

from Peripheral A has the highest priority.

Some interrupt controllers allow the prioritiesimterrupts to be set in software. In this case, the
interrupt controller typically has registers that the priorities of the various interrupts.

8.1.2. Levels and Edges

Level-sensitive interrupts cause the processacegpand as long as the interrupt signal is at teeifpd
level. These interrupts are either high- or lowelesensitive. Edge-sensitive interrupts cause the
processor to respond when the interrupt signal gwesigh a transition. These interrupts are spestifi
as rising or falling edge-sensitiieigure 8-2shows signals for a level-sensitive and edge-g8easi
interrupt.

Figure 8-2. Level- and edge-sensitive interrupt isads
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In Figure 8-2 the level-sensitive interrupt is active high. Timee when the interrupt is active is shown
in the signal diagram, which is the time when tigaal is at the higher voltage. The interrupt sigma
the bottom oFigure 8-2is a rising edge-sensitive interrupt. It is activieen the signal transitions from
low to high, is held high for a certain minimum @&r(typically two or three processor clocks), anehth
it returns to low again.

There are issues related to both types of intesrfuir example, an edge-sensitive interrupt can be
missed if a subsequent interrupt occurs beforénikial interrupt is serviced. Conversely, a level-
sensitive interrupt constantly interrupts the pssoe as long as the interrupt signal is asserted.

Most peripherals assert their interrupt until iacknowledged. Some processors, such as the 16tel38
EX, contain registers that can be programmed tpatigither level-sensitive or edge-sensitive
interrupts on individual interrupts. Thus the séwisy selection affects detection of new interrsipin
that signal.

Acknowledging an interrupt tells the interruptingvite that the processor has received the inteamgpbt
gueued it for processing. The method of acknowlaglgin interrupt can vary from reading an interrupt
controller register to clearing an interrupt permgdiit. Once the interrupt is acknowledged, the
peripheral will deassert the interrupt signal. S@raecessors have an interrupt acknowledge sigaal th
takes care of this automatically in hardware.
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8.1.3. Enabling and Disabling

Maskable interrupts can be disabled and enablidraitdividually or globally. Nonmaskable interrapt
as the name implies, cannot be disabled. In theZ%4rocessor, individual interrupts are masked in
the Interrupt Controller Mask Register (ICMR). Thegjister is shown ifigure 8-3

Figure 8-3. PXA255 Interrupt Controller Mask Regist

Bit 313029227 262524 2322 20191817161514131211109 87 65 f-'ll
ICMR Register |= |2 |2 (== lslelzalxlzs]sle == BBl 2|2 |x(=|= HEEE:
(0x40D00004) |=|=|=|= (= |z |2 (= (=== === (=8| 8|=|=|= == 33|22

GPIO Pin O Interrupt

The ICMR is located at address 0x40D00Q&i4ure 8-3shows the Interrupt Mask (IM) for each of the
interrupts supported in the PXA255. Setting theesponding bit to 1 in the ICMR allows that
particular source to generate interrupts; settmegcorresponding bit to 0 masks that interrupt saur

For example, imagine that the interrupt pin fropeaipheral is connected to GPIO pin 0 on the PXA255
processorTable 8-1shows that the GPIO pin 0 interrupt source isgaes to interrupt number 8.
Therefore, to enable the GPIO pin 0 interrupt8tof the ICMR is set to 1. If an interrupt occursem

the GPIO pin 0 interrupt is enabled, it is routedhe interrupt controller for processing. To mésk

GPIO pin 0 interrupt source, set bit 8 of the ICKFO. If an interrupt occurs while the source is
disabled, the interrupt is ignored.

Each processor typically has a global interrupbégidisable bit in one of its registers. The PXA2&S
two bits in the Current Program Status RegisteiSR)Pthat globally disable all interrupts.

_ It is important to remember to reenable interruptgour software after you have

— disabled them. This is a common problem that cad te unexplained behavior |n
the system. If interrupts are disabled at the etatiy function, ensure that all
software paths that exit the routine reenable linfes.

You generally cannot access the global interriggdldirectly using the C language. In this case, yo
need to write assembly code to enable and disddibalgnterrupts. Some compiler libraries, such as
those for the x86 family of processors, contairctions to handle global interrupt enabling (witle th
enable function) and global interrupt disabling (with tiieable function).
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8.2. Interrupt Map

Now that we have an understanding of how an inp¢macurs, let's take a look at how the processor
goes about dealing with an interrupt in softwartteAthe processor is reset, either by cycling poove
asserting the reset signal, interrupts are disaldeeé of the jobs of the startup code is to englabal
interrupts once the system is ready for them. éfatie procedure for ensuring that the systemasdye
for interrupts is installing software to handlerthéAn interrupt service routine, which carries the
basic action necessary to deal with the interig@ssociated with each interrupt.

In order for the processor to execute the cori®Bt, la mapping must exist between interrupt sources
and ISR functions. This mapping usually takes trenfof an interrupt vector table. The vector table,
located at a memory address known to the hardwsauosually an array of pointers to functions. The
processor uses the interrupt number (a unique nuagseciated with each interrupt) as its index into
this array. In some processors, the value storégeivector table array is usually the addresbk@1$R
to be executed. Other processors actually haveustgins stored in the array (commonly called a
trampoline) to jump to the ISR.

For the ARM processor, the addresses in the irgexector table are at fixed locations in memory.
These addresses are listedable 8-3

Table 8-3. ARM interrupt vector table
Exception/interrupt source Address
Reset 0x00000000
Undefined instruction 0x00000004
Software interrupt 0x00000008
Prefetch abort 0x0000000C
Data abort 0x00000010
IRQ 0x00000018
FIQ 0x0000001C

The addresses ifable 8-3are locations in memory used by the ARM procetseixecute the ISR for a
particular interrupt. Information about the intgatwector table is contained in the documentatiooua
the processor. Because the addresses in the ARKupt vector table are 32 bits apart, the code
installed in the interrupt vector table is a juroghe real ISR.

It is critical for the programmer to install an 136t all interrupts, even the interrupts that apé used in

the system. If an ISR is not installed for a patac interrupt and the interrupt occurs, the exiecuof
the program can become undefined (commonly calieth§ off into the weeds").
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A good procedure is to install a default ISR inititerrupt vector table for any interrupt not uséde
default ISR ensures that all interrupts are praadssid acknowledged, allowing the main program to
continue executing. Have your startup code ing&hll interrupts in the vector table to the defaul
handler to ensure there are no unhandled intetripes install ISRs for specific interrupts usedha
system.

The first part of initializing the interrupt vecttable is to create an interrupt map that orgartizes
relevant information. An interrupt map is a talllattcontains a list of interrupt numbers and theads

to which they refer. This information should beluted in the documentation provided with the board.
A partial interrupt map for the Arcom board is stmow Table 8-4

Table 8-4. Partial interrupt map for the Arcom bodr
Interrupt number Interrupt source
8 Ethernet
11 USB
21 Serial Port 2
22 Serial Port 1
26 Timer O
27 Timer 1
28 Timer 2

This table is similar to the interrupt list for tRXA255 processor shown irable 8-1 However, this
table shows the interrupt sources that are speoifiise Arcom board.

Once again, our goal is to translate the infornmatiothe table into a form that is useful for the
programmer. The interrupt map table should go yaiar project notebook for future reference. After
constructing an interrupt map such as the orialrie 8-4 you should add a third section to the board-
specific header file. Each line of the interruptonieecomes a singglefine  within the file, as shown
here:

/ *% *kk *kk *kk *k% *k%k

* Interrupt Map

*hkkkkkkkk *kk *% *% * KKk * KKk Kkkkkk /

#define ETHERNET_INT (8)
#define USB_INT (11)
#define SERIAL2_INT (21)
#define SERIALL_INT (22)
#define TIMERO_INT (26)
#define TIMERL_INT (27)
#define TIMER2_INT (28)
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8.3. Interrupt Service Routine

Let's take a closer look at the ISR. The ISR idtimetion called when a particular interrupt occuts
central purpose is to process the interrupt anad tétirn control to the main program. TypicallyRIS
functions have no arguments passed into them;daeyever return a value.

In order to keep the impact of interrupts on thecesion of the main program to a minimum, it is
important to keep interrupt routines short. If diddial processing is necessary for a particularmpt,
it is better to do this outside of the ISR. Keepi8Rs short also aids in ISR debug, which can be
difficult. When it is done by a specific functiocompletion of the interrupt handling outside th& IS
called a deferred service routine (DSR).

Regardless of the specific processing requirechby$R, the ISR is responsible for doing the follayv
things:

Saving the processor context

Because the ISR and main program use the samespavaegisters, it is the responsibility of the
ISR to save the processor's registers before biagimmy processing of the interrupt. The
processor context consists of the instruction gojmegisters, and any flags. Some processors
perform this step automatically.

Acknowledging the interrupt

The ISR must clear the existing interrupt, whickase either in the peripheral that generated
the interrupt, in the interrupt controller, or both

Restoring the processor context

After interrupt processing, in order to resumertign program, the values that were saved prior
to the ISR execution must be restored. Some proceperform this step automatically.

Some compilers include the keywanebrrupt ~ or something similar. This enables the compiler to
automatically generate the code used to save thexiovhen the ISR is entered, and to restore the
context when the ISR is exited. An example of cibde includes theterrupt  keyword follows:

interrupt void interruptServiceRoutine(void)

[* Process the interrupt. */
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The documentation for the compiler shows whethemtarrupt ~ keyword is supported. If the

compiler does not support this keyword, a comsieecific#pragma may be required to declare an ISR.
The GNU compilegccuses a third approach, involving the compiler-dpekeyword_ _attribute_

_, which takes options as arguments, as shown here:

void interruptServiceRoutine( ) _ _attribute_ ( (interrupt ("IRQ"));

Some processors, such as certain Microchip PI@shaae only one ISR for all interrupts. This ISR
must determine the source of the interrupt by cimgckach potential interrupt source. In this céds,a
good idea to check the most important interrugst fifhe technique used by the ISR to determine that
the interrupt source is hardware-specific.

When designing your software, it is typically bestnclude the ISR for a
particular device in the driver for that peripheretis keeps all the device-speci
+* code for a particular peripheral isolated in a kingodule.

ic

i
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Figure 8-4is a graphical representation of the interruptpss. For this example, we will assume the
Ethernet network interface controller generatesrtesrupt, although this process is relevant foy a
interrupt.

Figure 8-4. Software flow during interrupt
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Ethernet network Main Program
Enlterfacecnntmller ahile (1)

interrupt occurs
?F {foo == TRUE}

/* Do something */

Processor Stack

Internupt Vector
Table l
Ethernet ISR Address Be--feeecscccccccccncnnneans
ISR
interruptEthernet ISR

Processor Context

Timer 2 ISR Address

}

else
{
/* Do something else */
}
}

In Figure 8-4 the processor is executing the main program velmeinterrupt occurs from the Ethernet
network interface controller. The processor finst® instruction in progress before halting exeout
of the main program. (Some processors allow inggion of long instructions so that interrupts ao¢ n
delayed for extended periods of time.)

The processor next looks up the address of thedEfRe Ethernet network interface controller,
interruptEthernetiSR , in the interrupt vector table, and the procegsmips to this function. The
interruptEthernetISR function saves the processor context to the psocssstack.

The ISR then clears the interrupt. Once compléte)$R restores the context and returns. The main
program continues its execution from the point hicl it was interrupted. Most processors have a
special "return from interrupt” instruction for &rg the ISR.

One important concept associated with interruplatency. Interrupt latency is the amount of tima
when an interrupt occurs to when the processomBegiecuting the associated interrupt servicemeuti
Interrupt latency is a metric used by some engmeevaluate processors and is very importargait r
time systems. Disabling interrupts increases infgriatency in an embedded system, because the
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latency includes the time between the occurrendbeointerrupt and the moment interrupts are
reenabled.

Although there is a single ISR for each interrtipére might be a number of reasons the interrupt
occurs. It is the responsibility of the ISR to detme the specific cause of the interrupt and pedce
accordingly. The following code framework shows hanvISR reads the interrupt status register to
determine the interrupt, acknowledges the interbypariting the value back to the interrupt status
register, and then determines the cause of theruiptie It is quite possible that more than onermnigt
source is active during the ISR. Thus, the ISR mahsetk every source; failure to do so may result in
missing an interrupt.

interrupt void interruptServiceRoutine(void)

{

uint8_t intStatus;

/* Determine which interrupts have occurred. */
intStatus = *pIntStatusReg;

[* Acknowledge the interrupt. */
*pIntStatusReg = intStatus;

if (intStatus & INTERRUPT_SOURCE_1)
{

/* Do interrupt processing. */

}
if (intStatus & INTERRUPT_SOURCE_2)

/* Do interrupt processing. */
}
}

8.3.1. Shared Data and Race Conditions

A common issue when designing software that ugesrupts is how to share data between the ISR and
the main program. A race condition is a situatidrere the outcome varies depending on the precise
order in which the instructions of the main codd #re ISR are executed; this should be strenuously
avoided.

It can be extremely difficult to find race condiibugs because interrupts are asynchronous evats a
to make matters worse, the race condition doesatirevery time the code executes. Your softwane ca
run for days and pass all production tests witleodiibiting this bug—but then, once the unit is pleip

to the customer, it is certain to show up.

The following code example will give you a bettederstanding of race conditions. Imagine that the

serial port ISRserialReceivelsr is invoked when an incoming character arrivescaracters are
receivedgindex is incremented to keep track of the number of attars stored in the memory buffer.
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Themain function also usegindex , by decrementing it when it processes the receiedacters in the
memory buffer. Here is the example code:

int gindex = 0;
interrupt void serialReceivelsr(void)
[* Store receive character in memory buffer. */

glndex++;

}
int main(void)
while (1)
if (gIndex)
{ [* Process receive character in memory buffer. */
glndex--;
}

}
}

Can you spot the problem with this code?

Let's assume the variahjidex has a value of 3 when the line of code that deendsthis variable
executes:

glndex--;

This line of code results in assembly-languageuesions that do something like this:

LOAD glIndex into a register;
DECREMENT the register value;
STORE the register value back into gind ex;

The first step is to read the valuegofdex , 3, from its location in RAM into a processor &gr. Next,
the register value is decremented, resulting ialaevof 2.

Now suppose a serial port receive interrupt ocbefere the new value gfndex is stored in the
memory. The processor stops executiagh and executes the serial port ISRjalReceivelsr . The
ISR incrementgindex to a value of 4.

The processor resumes executiomaih after the ISR exits. At this pointain executes the line of

code that stores the register value, 2, back heosairiableggindex . Nowgindex has a value of 2, as if
the latest interrupt never occurred to incremygmtex .
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This race condition can cause the program to loseming charactergigure 8-5shows the race
condition for this example code.

Figure 8-5. Example race condition

main() Interrupt | serialReceiverIsr() main ma
Load gIndex occurs Increment ;::m:); Store
into register gIndex register
back to
gIndex
z

The decrement code in thain program is called a critical section. A criticaksion is a part of a
program that must be executed in order and atolpjealwithout interruption. A line of C code (even
as trivial as increment or decrement) is not nerdgsatomic, as we've seen in this example.

So, how is this problem corrected? Because arrugtecan occur at any time, the only way to make
such a guarantee is to disable interrupts duriagthical section. In order to protect the critisaction
in the previous example code, interrupts are deshbkfore the critical section executes and then
enabled after, as shown here:

int main(void)
while (1)
{ interruptDisable( );
if (gIindex)

/* Process receive character in memory buffer. */

glndex--;

}

interruptEnable( );

In embedded systems, and especially real-timesgste is important to keep interrupts enabled as
much as possible to avoid hindering the responss®nf the system. Try to minimize the number of
critical sections and the length of critical sectamnde.
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The safest solution is to save the state of thexrimpt enable flag, disable

interrupts, execute the critical section, and tfe=tore the state of the interrupt
* enable flag. Enabling interrupts at the end wittenguring that they were enablgd

at the outset of the critical section is risky.

...
%
=0 T,
.

= I

Race conditions can also occur when the resouaredtetween an ISR and the main program is a
peripheral or one of the peripheral's registers.example, suppose a main program and an ISR ase th
same peripheral register. The main program readgister and stores the value. At this point, & IS
executes and modifies the value in that same ergMthen the main program resumes and updates the
peripheral register, the ISR's value is overwrited lost.

Critical sections are also an issue when usin@ktie operating system (RTOS), because the tasks
may then also share resources such as global lewiabperipheral registers. We will look at this i

Chapter 10
8.4. The Improved Blinking LED Program

Now we will look at an interrupt example using@ér. For this example, we will use the Blinking LED
code fromChapter 3However, instead of using a loop to handle tiveng of the LED blink, we will
use a hardware timer. Most microcontrollers inclugdo several timers.

There are several advantages to using a timerrrétthe a loop for the timing: the processor is teee
handle other tasks instead of sitting wréle loop doing nothing, a timer is more accurate for
measuring a loop than a stopwatch, and you caunledéécthe exact time you want the timer interrapt t
fire instead of using a trial-and-error approackdubon the processor's clock.

In this improved Blinking LED program, the delaytme is eliminated and a timer device driver is
used to handle the delay between LED toggles. ifiter is used to interrupt the processor once a
specific interval has elapsed.

8.4.1. How Timers Work

A timer is a peripheral that measures elapsed tiyp&ally by counting down processor cycles or
clocks. A counter, by contrast, measures elapseel tising external events. A timer is set up by
programming an interval register in the timer pleeial, with a specific value calculated by thesafe
engineer to determine the timer interrupt interifde timer peripheral then uses a clock to keemicou
of the number of ticks that have elapsed sinceither has been started. The number of clock tisks i
compared to the value in the timer interval regisBnce they are equal, a timer interrupt is gaeeréf
enabled).

The timer counts cycles either from the processoai clock signal or from a separate clock fed int
the timer peripheral from an external processor lpisome processors, the clock used for the toaser
be selected by programming the timer's configunatégisters. Many processors today also include
multiple internal clock sources that can be usedtitce the timers.
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On some processors, the calculated time interyaogrammed into a timer register that is itself
decremented at each clock tick. Once the valukanregister hits zero, a timer interrupt is getegta
The timer peripheral then reloads the timer regisith the calculated interval value (stored in a
separate register) and once again begins decrergehis value at each clock tick. Other processors,
such as the PXA255, have timers that count up.uBet® check your processor's documentation to
understand how your timer functions.

The PXA255 processor has four timers. For this etamimer 0 is used; the 32-bit PXA255 timer
registers for timer 0 are shownkimure 8-6
Figure 8-6. PXA255 processor timer 0 registers
Bit 3130202272625 2422220191817 1615141312110 9 8 7 6 5

OSMRO Register
(0x40A00000)

Timer Match Value

Bit 3130228272625 24232212019 181716151413121109 87 65
OSCR Register )
(0x40A00010) Timer Count Value

Bit 313029028272 25242221 20191817 1615141312110 9 8 7 6 5

0SSR Register
(0x40A00014) Reserved
Bit 313020227 26252423222191817161514131221119 87 6 5
OIER Register
(0x40A0001C) Reserved

On the PXA255, the timer count register (OSCR) amista count that is incremented on rising edges of
the timer clock, which operates at 3.6864 MHz. tlmeo words, each time the clock signal goes from
low to high, the OSCR is incremented by one.

The timer match register (OSMRn, where n is thetimumber) contains the timer values for the four
different timers. After every rising edge of theér clock, the processor compares the value in the
OSMRn to the OSCR. If there is a match, an intdrimigenerated and the corresponding bit is stitan
timer status register (OSSR). The timer interrunatide register (OIER) determines which interrupés a
enabled for the four different timers.
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Watchdog Timers

Another type of timer frequently mentioned in refece to embedded systems is a watchd
timer. A watchdog timer is a special hardware $aife mechanism that intervenes if the
software stops functioning properly. The watchdotet is periodically reset (sometimes
called "kicking the dog") by software. If the so#ive crashes or hangs, the watchdog time
soon expires, causing the entire system to be aegematically.

The inclusion and use of a watchdog timer is a commay to deal with unexpected
software hangs or crashes that may occur aftesytstem is deployed. For example, suppc
your company's new product will travel into spade.matter how much testing you do
before deployment, the possibility remains thatdhtee undiscovered bugs lurking in the
software and that one or more of these is capdiilarming the system altogether. If the
software hangs, you won't be able to communicatie the system, so you can't issue a re
command remotely. Instead, you must build an autiemacovery mechanism into the
system. And that's where the watchdog timer comes i

One important implementation detail to remembermunging a watchdog timer is that you
should always implement the code that handlestregehe watchdog timer in the main
processing loop. Never implement the watchdog tireset in an ISR. The reason is that ir
embedded system, the main processing loop canwaaiteythe interrupts and ISRs continu
to function. In this case, the watchdog timer woudder be able to reset the system and tl
allow the software to recover.

og

=
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Themain routine for the Blinking LED implementation thatas a timer instead of a delay

loop is very

similar to themain routine discussed i@hapter 3 This part of the code is hardware-independerg. Th

main function starts with initialization of the LED ctal port with theledinit ~ function. An

initialization routine for the timer device driveimerinit  , is called to initialize and start the timer

hardware.

The infinite loop inmain is empty in this case because there is no otleeepsing needed for this
version of the Blinking LED program. All of the pressing happens in the background with the timer
interrupt, but the infinite loop is still neededarder to keep the program running. Notice herettia

delay ms function has been removed:

#include "led.h"
#include "timer.h"

/************************************************** *k% *k*k *

*

* Function: main

*

* Description: Blink the green LED once a second.

*

* Notes:

*
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* Returns:  This routine contains an infinite | oop.

*

*k%k *kk *k% *k% xxn/
int main(void)

{

[* Configure the green LED control pin. */
ledInit( );

/* Configure and start the timer. */
timerlnit( );

while (1)

return O;

Thetimerinit  routine initializes the registers needed for theet device driver and then enables the
timer interrupt. The global state variableitialized is used to ensure the timer registers are only
configured once.

The first step to configure the timer is to cleay @ending interrupts. This is done by writing ®it
(defined by the bitmaskMER_0_MATCH to the timer status (OSSR) register (definedhayrhacro
TIMER_STATUS_RE®

For the next step, we need to calculate the inpeinterval. The PXA255 Processor Developer's
Manual states that the timers are incremented$&64 MHz clock. To toggle the LED every 500 ms,
the following equation is used to determine theigdbr the timer match register:

Timer Match Register Value = Timer clock x Timetarval
For our example, the calculation is:

Timer Match Register Value = 3,686,400 Hz x 0.508els

= 1,843,200

= 0x001C2000

The macroriIMER_INTERVAL_500MSis set to the interval value 0x001C2000. The PX&PBocessor
Developer's Manual describes the algorithm foiirsgtip a timer as follows:

1. Read the current count value in the timer counsteg(OSCR).

2. Add the interval offset to the current count vallibis value corresponds to the amount of time
before the next time-out.

3. Program the new interval value into the timer matgister (OSMRO).
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To set the timer interval, the OSMRO register (okedi by the macroIMER_0_MATCH_REJIS
programmed with the current value of the timer ¢qulas theTIMER_INTERVAL_500MStimer interval.

Next, the timer interrupt is enabled in two pladég: timer peripheral and the interrupt controllarthe
timer peripheral, the timer interrupt enable istcolfed by bit O (defined by the bitmask
TIMER_O_INTEN) in the 32-bit OIER (defined by the macnMER_INT_ENABLE_REG.

Then the interrupt controller is configured to allmterrupts from the timer peripheral. As shown in
Table 8-4 the timer O interrupt is mapped to interrupt nemb6. Therefore, the program sets bit
number 26 (defined by the macrER_0_ENABLB in the Interrupt Controller Mask Register (ICMR)

(defined by the macrmTERRUPT_ENABLE_REG

Because themerlnit

routine.

g function enables the timer O interrupt in the inipt
— controller, an ISR for the timer O interrupt mustihstalled prior to calling this

For the final step, initializing the timer, set tinéialization state variable toRUE as shown here:

#define TIMER_INTERVAL_500MS  (0x001C2000)

/**************************************************

*

* Function:

*

timerlnit

* Description: Initialize and start the timer.

*

* Notes: This function is specific to the Ar
* Ensure an ISR has been installed fo
* to calling this routine.

*

* Returns:

*

None.

kkkkkkkkkkkkhkkkkkhkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkx
void timerlnit(void)

{
static int binitialized = FALSE;

[* Initialize the timer only once. */
if (bInitialized == FALSE)
{

/* Acknowledge any outstanding timer interr
TIMER_STATUS_REG = TIMER_0_MATCH;

[* Initialize the timer interval. */
TIMER_0_MATCH_REG = (TIMER_COUNT_REG + TIME

/* Enable the timer interrupt in the timer
TIMER_INT_ENABLE_REG |= TIMER_O_INTEN;

/* Enable the timer interrupt in the interr
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INTERRUPT_ENABLE_REG |= TIMER_O_ENABLE;

blnitialized = TRUE;

}
}

Prior to entering the ISR, the processor contegtised. Use the following function declaration Isat t
the GNU compiler includes the code for the contaxte (and restore at the end of the ISR):

void timerinterrupt( ) __attribute_ _ ((interrupt ("IRQM));

Next, the ISR acknowledges the timer O interrujpie processor documentation states that
acknowledging a timer interrupt is accomplisheduiging a 1 to the timer O bit (defined by the bésk
TIMER_0_MATCH of the 32-bit OSSR (defined by the matmaER_STATUY. SeeFigure 8-6for details
of the OSSR and timer 0 match status bit 0 (TOMS).

Next, the LED state changes with a call to the fimmdedToggle . Then the timer match value is
updated for the next timer interrupt interval. Tpodate the timer O match register, first read theecu
timer count, add the timer interval, and then witiis result into the timer match register
(TIMER_O_MATCH_RE}

Finally, the processor context is restored and$ffereturns:

#include "led.h"

/************************************************** *k% ** *%
*

* Function: timerinterrupt

*

* Description: Timer 0 interrupt service routine.

*

* Notes: This function is specific to the Ar com board.

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void timerinterrupt(void)

{

/* Acknowledge the timer O interrupt. */
TIMER_STATUS = TIMER_0_MATCH,;

/* Change the state of the green LED. */
ledToggle( );

[* Set the new timer interval. */
TIMER_O MATCH_REG = (TIMER_COUNT_REG + TIMER_IN TERVAL_500MS);
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You can now build this code and run it on the tageom board. If successfully built, this versioh
the Blinking LED program should operate the samg asthe one shown @hapter 3

Time Sharing

In some embedded systems, you will have more thasksieed to occur at a specific interva
than there are timers to use for each task. Opitheessor you must use will only have a
single timer. Don't worry, there are ways arourid gnedicament—you can share a timer
among several tasks.

For example, imagine that you have the followirgksathat must occur in your embedded
system:

Read a temperature sensor every 5 ms.
Write a character out a serial port every 12 ms.
Toggle an I/O pin every 100 ms.

Furthermore, in this example, the processor hagaslingle timer to use. What are you to
do?

The timer interval is set to the greatest commatofa(in this case, 1 ms) of the desired
times. Next, the ISR counts the number of timeznvels that have elapsed. Once the
appropriate number of intervals has occurred fergihecific task, a flag is set for that job t¢
be performed.

A=)

There are several ways to implement this typemoétisharing. One way is to have a separate
static counter variable for each interval of whyclu need to keep track. The following is a
code snippet that would be used in the timer ISRatudle the three different intervals for the
jobs listed:

timerlCount++;
timer2Count++;
timer3Count++;

/* Set the flag to read the temperature sensor ever y5ms
and then reset the counter. */

if (timerlCount >=5)

{
gbReadTemperatureSensor = TRUE;
timerlCount = 0;

}

/* Set the flag to write the character out the seri al port
every 12 ms and then reset the counter. */

if (timer2Count >= 12)

{
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gbWriteSerialCharacter = TRUE;
timer2Count = 0;

}

/* Set the flag to toggle the I/O pin every 100 ms and
then reset the counter. */
if (timer3Count >= 100)

gbTogglePin = TRUE;
timer3Count = 0;

}

The main program would then regularly check whetmgr global flag is set, perform the
necessary action, and reset the flag. As discusseigr in this chapter, care must be taker to
avoid a race condition since the global flags &aed between the ISR and the main
program.

8.5. Summary of Interrupt Issues

Interrupts are an important part of most embedgstems. Here are some key points to keep in mind
when dealing with interrupts:

Get the first interrupt

Focus on getting the specific interrupt you arekivay on to occur first. Then move on to getting
that interrupt to fire subsequent times.

Interrupt blocked

Interrupts can be blocked at several points. Enshatethe specific interrupt is enabled both in
the interrupt controller and at the source periphéevice. Make sure that global interrupts are
enabled in the processor.

ISR installation

Verify that the ISR is installed in the interruggotor table properly and for the correct interrupt
vector. Understand the mapping of interrupts ferpghocessor. Using the LED debug technique
mentioned irChapter 5can be a valuable tool for tracing the executiatihpvhen an interrupt
occurs.
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Protect against unhandled interrupts

Ensure that there is an ISR for every interrughasystem. It is best to install a default ISR for
all interrupts at initialization time to ensure gyenterrupt is handled.

Processor context

Make sure the processor context is saved and eesproperly in the ISR. Registers can be
trampled by an ISR that will eventually wreak hawocyour main program.

Acknowledge the interrupt
The interrupt must be acknowledged so that theasigrdeasserted. If this is done incorrectly or

not done at all, ISRs for the same or lower-prjoiriterrupts won't run again. Or, if it is a level-
sensitive interrupt, the ISR will run repeatedigéease the interrupt signal will remain asserted.

Avoid race conditions
A lot of forethought must go into designing youfta@re if the embedded system you are
working on uses interrupts. The communication meigmas between the main program and the

interrupt service routines must be carefully thdumkt. Race conditions are dangerous errors
that can be extremely difficult to find.

Enabling and disabling
Keep disabling of interrupts to a minimum to reduderrupt latency; this is very important in
real-time systems. Be careful in the implementatibthe disable and enable code around

critical sections. Always use a variable to keagkrof the enable state of interrupts so that
interrupts are properly restored, and to avoid mideinterrupt problems.

Chapter 9. Putting It All Together

La commedia é finita! (The comedy is finished!)
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—Ruggero Leoncavallo Pagliacci

In this chapter, we will bring all of the elemediscussed so far together into a complete embedded
application. Working hard to understand each pafaesystem and application is necessary, butioerta
aspects may remain confusing until all of the psemmee combined. You should leave this chapter avith
complete understanding of the example program laaability to develop useful embedded applications
of your own.

9.1. Application Overview

The application we're going to discuss is comprisiettie components we have developed thus far,
along with some additional functionality. It isestament to the complexity of embedded software
development that this example comes toward theoéttds book rather than at its beginning. We'vd ha
to gradually build our way up to the computing fdan that most books, and even high-level language
compilers, take for granted.

The Monitor and Control application provides a neefior you to exercise different aspects of an
embedded system (hardware and software) by additigetbasic command set we provide in this book.
You will quickly see, as your project progressesrfrdesign to production, how valuable this todbis
everyone working on the project.

Once you're able to write the Monitor and Contmalgrzam, your embedded platform starts to look a lot
like any other programming environment. The hargests of the embedded software development
process—familiarizing yourself with the hardwarstablishing a software development process for it,
and interfacing to the individual hardware devicese-behind you. You are finally able to focus your
efforts on the algorithms and user interfaces d@natspecific to the product you're developing. bmsn
cases, these higher-level aspects of the prograrbeaeveloped on another computer platform—in
parallel with the lower-level embedded softwareedlegment we've been discussing—and merely
ported to the embedded system once both are canflate the application level code is debugged and
robust, you can port that code to future projects.

Figure 9-1contains a high-level representation of the Maraitod Control application. This application
includes three device drivers and a module foctramand-line interface. An infinite loop is used fo

the main processing in the system. An RTOS cam&@porated into this application should you decide
to use one.

Figure 9-1. The Monitor and Control application
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Command-

Monitor and Control Line
Processing Loop Interface

Module

LED Driver Serial Driver

Buzzer Driver

Hardware Arcom Board Hardware

In addition to the Monitor and Control program'sgessing loop and the CLI module, three device
drivers are shown in the figure. These control @inne Arcom board's LEDs, a buzzer, and a serial
port. This layered design approach allows the dsite be changed when the program is ported tava ne
hardware platform, with the application softwarmaining unchanged.

Themain function that follows contains the primary progegdoop for the Monitor and Control
program, which includes functionality that we hawplored in previous chapters (such as sending
characters to and receiving characters from alg®r8). Additional functionality includes a drivéor

the Arcom board's buzzer, the ability to assenmiderming characters into a command, and the ability
to process commands. See the online example codetfils about the buzzer driver. Because the
Monitor and Control program accepts user input,campt ¢) is output when the program is waiting for
the user to enter a command.

#include "serial.h"
#include "buzzer.h"
#include "led.h"
#include "cli.h"

/ *k%k *k%k *kk *kk *k% * * *k%k

*

* Function: main

*

* Description: Monitor and control command-line in terface program.
*

* Notes:

*

* Returns:  This routine contains an infinite | oop.

kkkkkkkkkkkkkkkk *% *kk * ********************/
int main(void)

{

char rcvChar;
int bCommandReady = FALSE;

[* Configure the green LED control pin. */
ledInit( );
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[* Configure the buzzer control pin. */
buzzerlnit( );

[* Configure the serial port. */
seriallnit( );

serialPutStr("Monitor and Control Program\\r\\n ");
serialPutChar('>");

while (1)

{
/* Wait for a character. */
rcvChar = serialGetChar( );

/* Echo the character back to the serial po rt. */
serialPutChar(rcvChar);

/* Build a new command. */
bCommandReady = cliBuildCommand(rcvChar);

/* Call the CLI command processing routine to verify the command entered
* and call the command function; then outp ut a new prompt. */

if (bCommandReady == TRUE)

{

bCommandReady = FALSE;
cliProcessCommand( );

serialPutChar('>");

}
}

return O;

}

9.2. Working with Serial Ports

We looked at a serial driver @hapter 7 The Monitor and Control program uses the samalsiver
with some additional functionality.

One change to the serial driver is the additioa gfut string” functionserialPutStr . This function,
which follows, allows strings to be sent out theaeort through a single call rather than having
specify each character in order. This is similath® standard @rintf  function, which calls the
serialPutChar  function repeatedly until the entire string hasrb&ansmitted out the serial port.

/************************************************** *k% * *%

*

* Function: serialPutStr

*

* Description: Outputs a string to the serial port

*

* Notes:

*
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* Returns:  None.

*

*kk *kk *kk *kk nnn/

void serialPutStr(char const *pOutputStr)
{

char const *pChar;

[* Send each character of the string. */
for (pChar = pOutputStr; *pChar !="\0"; pChar ++)
serialPutChar(*pChar);

9.3. Command-Line Interface Processing

The command-line interface module is responsibidéalding the incoming command, parsing a
completed command, and executing the function @ssocwith the command. The command-line
interface module contains two functions to hankése tasks:liBuildCommand and
cliProcessCommand

Thecommand_t struct has two members: the command name (defipede pointename), and the
function to execute when the command is enterelih@teby the pointer to a functiganction ).

The command tablgCommandTable, iS acommand_t type array. The last command name and function
in the table are set taULL in order to aid the command lookup procedure. Adidal commands can be
added by following the format shown, but new comdsamust be added before the terminating last
command.

You may notice that a macro calledXx_COMMAND_LEsIdefined. Command names must be less than or
equal to the maximum command length. The followdnde shows the command struct type and the
command table:

#define MAX_COMMAND_LEN (10)
#define COMMAND_TABLE_SIZE 4
typedef struct

char const *name;
void (*function)(void);
} command_t;

command_t const gCommandTable[ COMMAND_TABLE_LEN] =
{

{"HELP", commandsHelp,},

{"LED", commandsLed, },

{"BUZZER", commandsBuzzer, },

{NULL, NULL}
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As characters are received from the serial poetnthin processing loop calls ti@uildCommand
function, as we saw earlier in this chapter. Oncerapleted command is received, indicated by a
carriage return ) character, the buffer index is reset and thetfanaeturnsTRUE Otherwise, the
buffer index is incremented ardLSE is returned.

cliBuildCommand  stores the incoming characters in a buffer cajtesinmandBuffer . The
gCommandBuffer has enough room for a single comman#aX_COMMAND_LEBize plus one additional
byte for the string-terminating character. Certzharacters are not stored in the command buffer,
including line feeds\\v ), tabs \it ), and spaces.

Notice that the incoming characters are convexagppercase (with the macro_UPPER prior to
insertion into the buffer. This makes the command-interface a bit more user-friendly; the usezsio
not have to remember to use capitalization to ergkd commands.

The local static variabliex keeps track of the characters inserted into tinencand buffer. As new
characters are stored in the buffer, the inderdseimented. If too many characters are received for
command, the index is set to zero ardEis returned to start processing the command.

#define TO_UPPER(X) (x>='"a") && (x <="'z ) ? ((x) - (‘a"-'A") : (X))

static char gCommandBufferfMAX_COMMAND_LEN + 1];

/************************************************** *k% ** *%
*

* Function: cliBuildCommand

*

* Description: Put received characters into the co mmand buffer. Once
* a complete command is received retu rn TRUE.
*
* Notes:
*
* Returns: TRUE if a command is complete, othe rwise FALSE.
*
kkkkkkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkx *kk ** xx/
int cliBuildCommand(char nextChar)
{
static uint8_t idx = 0;
/* Don't store any new line characters or space s. ¥/
if (nextChar =="\\n") || (nextChar =="") || (nextChar == "\\t"))
return FALSE;
/* The completed command has been received. Rep lace the final carriage
* return character with a NULL character to he Ip with processing the

* command. */

if (nextChar =="\\r")

{
gCommandBuffer[idx] = "\0";
idx = 0;
return TRUE;

}
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[* Convert the incoming character to uppercase.

* of commands in the command table. Then store
* in the command buffer. */
gCommandBuffer[idx] = TO_UPPER(nextChar);
idx++;

/* If the command is too long, reset the index
* the current command buffer. */
if (idx > MAX_COMMAND_LEN)
{
idx = 0;
return TRUE;
}

return FALSE;

Once a completed command is assembled;litvecessCommand

This matches the case
the received character

and process

function, which follows, is called

from the main processing loop. This function lotp®ugh the command table searching for a matching

command name.

The variabledx is initialized to zero to start searching at tlegibning of the command table and then
keeps track of the command currently being checkid.functiorstrcmp is used to compare the user
command with the commands in the table. If the camuaiis found, the flagCommandFoundis set to

TRUE This causes the search loop to exit and the e¢eddunction to execute. If the command is not

found, an error message is sent out the serial port

#include <string.h>

/ *k%k *kk *%% *k%

*

* Function: cliProcessCommand

*

* Description: Look up the command in the command

* command is found, call the command’
* command is not found, output an err
*

* Notes:

*
* Returns:  None.
*

khkkkkkhkkkhhkkkhkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx

void cliProcessCommand(void)

{
int bCommandFound = FALSE;
int idx;

[* Search for the command in the command table
* the end of the table is reached. If the comm

* out of the loop. */

for (idx = 0; gCommandTable[idx].name != NULL;
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{
if (strcemp(gCommandTable[idx].name, gComman dBuffer) == 0)
bCommandFound = TRUE;
break;
}
}
[* If the command was found, call the command f unction. Otherwise,

* output an error message. */
if (bCommandFound == TRUE)

{
serialPutStr("\r\n");
(*gCommandTable[idx].function)( );

}

else
serialPutStr("\r\nCommand not found.\\r\\ n");

All functions in the command table are containedne file; this keeps the entry point for all cormda
in a single location. TheommandsLed function toggles the green LED, as shown in thiefong code.
This function uses the sare@Toggle function covered iilChapter 3

#include "led.h"

/************************************************** *k% *k*k

*

* Function: commandsLed

*

* Description: Toggle the green LED command functi on.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void commandsLed(void)

ledToggle( );

ThecommandsBuzzer function toggles the buzzer on the Arcom board@adnodule by calling the
functionbuzzerToggle , as shown here:

#include "buzzer.h"

/************************************************** *k% *k*k *

*

* Function: commandsBuzzer

*
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* Description: Toggle the buzzer command function.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxrhhx

void commandsBuzzer(void)

buzzerToggle( );
}

KKk *kk /

The help command functiotsgmmandsHelp , loops through th@gCommandTable and sends the command
name out the serial port. This gives the usertiadjof all commands supported by the command-line

interface.

#include "cli.h"
#include "serial.h"

/ *k%k *kk *k% *k%

*

* Function: commandsHelp

*

* Description: Help command function.

*

* Notes:

*
* Returns:  None.
*

khkkkkhkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxhhhx

void commandsHelp(void)

{

int idx;

/* Loop through each command in the table and s
* name to the serial port. */
for (idx = 0; gCommandTable[idx].name !'= NULL;

serialPutStr(gCommandTable[idx].name);
serialPutStr("\r\n");
}
}

KKk kKK /

end out the command

idx++)

The Monitor and Control program gives you a bagetihfunctionality for the development of a useful
command-line interface. The functionality of thel@an be extended by adding new commands or
enabling users to input parameters for commandactommodate input parameters, dhv@mand_t
structure can be expanded to contain the maximuwhmanimum values. When parsing the command,
you will need to parse the input parameters anidlatd the parameter ranges with those containéukin

command table.
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Chapter 10. Operating Systems
0-S-0-pho-bi-a n. A common fear among embeddetnsygtogrammers.

Many embedded systems today incorporate an opgrsystem. This can range from a small kernel to a
full-featured operating system—typically calledealrtime operating system or RTOS (pronounced
"are-toss"). Either way, you'll need to know wheaitires are the most important and how they ai use
with the rest of your software. At the very leasty need to understand what a real-time operating
system looks like on the outside. In this chapier take a detailed look at the mechanisms found in
most operating systems and how to use them.

The information in this chapter is very general dods not include specific code examples. That's
because the features and APIs that implement thet@s in this chapter are different on each
operating system. Subsequent chapters show youtwhdaton Linux and eCos, two popular operating
systems used in embedded environments.

10.1. History and Purpose

In the early days of computing, there was no sheigtas an operating system. Application
programmers were completely responsible for colmigophnd monitoring the state of the processor and
other hardware. In fact, the purpose of the fiprating systems was to provide a virtual hardware
platform that made application programs easierritewT o accomplish this goal, operating system
developers needed only provide a loose collectfanutines—much like a modern software library—
for resetting the hardware to a known state, repthia state of the inputs, and changing the sfateeo
outputs.

Modern operating systems add to this the abilitgxecute multiple software tasks simultaneouslyaon
single processor—a feature called multitaskinghEsach task (also commonly called a thread) is a
piece of the software that can be separated fremett of the operating system and run independentl
A set of embedded software requirements can ushallyroken down into a small number of such
independent pieces. For example, the printer selerdce described i@hapter Zontains two main
software tasks:

« Receiving data from the computers attached to therket port.
- Formatting and sending the data to the printechéd to the parallel port.

Tasks provide a key software abstraction that m#ileslesign and implementation of embedded
software easier, and the resulting source codelsirtgpunderstand and maintain. By breaking the
larger program into smaller pieces, the programraarmore easily concentrate her energy and talents
on the unique features of the system under devedapm

Strictly speaking, an operating system is not aireq component of any computer system—embedded

or otherwise. It is always possible to performghene functions from within the application program
itself. Indeed, all of the examples so far in thi®k have done just that. There is one path of
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execution—starting atain —that runs on the system. This is the equivaleimaring only one task. But
as the complexity of the application expands beybedsimple task of blinking an LED, the benefits o
an operating system far outweigh the associatets.cos

One common part of all operating systems is thaédefn most operating systems, the kernel consists
of the scheduler, the routine to handle switchiagveen the different tasks running in the systerd, a
the mechanisms of communication between tasks.

10.2. The Scheduler

We have already talked about multitasking and dle@ ithat an operating system makes it possible to
execute multiple "programs" at the same time. Buatwloes that mean? How is it possible to execute
several tasks concurrently? In actuality, the tasksnot executed at the same time. Rather, tleey ar
executed in pseudoparallel. They merely take tusirsg the processor. This is similar to the way
several people might read the same copy of a 0ok one person can actually use the book at angive
moment, but each person can read it if everyonestakns.

An operating system is responsible for decidingolvliask gets to use the processor at a particular
moment. The piece of the operating system thatdsaivhich of the tasks has the right to use the

processor at a given time is called the scheduile.scheduler is the heart and soul of any operatin
system. Some of the more common scheduling algositére:

First-in-first-out (FIFO)

This scheduling (also called cooperative multitagkiallows each task to run until it is finished,
and only after that is the next task started.

Shortest job first

This algorithm allows each task to run until it quetes or suspends itself; the next task selected
is the one that will require the least amount afgessor time to complete.

Priority

This algorithm is typically used in real-time opng systems. Each task is assigned a priority
that is used to determine when the task executss ibrs ready. Priority scheduling can be
either preemptive or nonpreemptive. Preemptive séaat any running task can be interrupted
by the operating system if a task of higher pnobécomes ready.
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Round robin

In this scheduling algorithm, each task runs fansgredetermined amount of time called a time
slice. After that time interval has elapsed, thening task is preempted by the operating system,
and the next task in line gets its chance to rime greempted task doesn't get to run again until
each of the other tasks in that round has hadhdace.

10.2.1. Real-Time Scheduling

The scheduler in some operating systems is rea-tihile the schedulers in the previous section tak
only priorities and time slices into account, d-teéae scheduler takes into account that some thake
deadlines. Some tasks in a real-time system makawa deadlines or might have low penalties for
missing deadlines. Tasks such as these can usgrbaokl processing time to do their work.

In this type of operating system, the real-timeesither should know the deadlines of all the taske
scheduler should base decisions on a comparisthre afeadlines of tasks that are in the ready queue.

There are several real-time schedulers, including:

Real-time executive

Each task is assigned a unique timeslot in a pieadig repeating pattern. A real-time executive
is more static than an operating system and asstivaethe programmer knows how long each
task takes. If the executive knows the task canpbet® its work in the allotted time, its
deadlines can all be met. This won't work if yoeeéo create and exit tasks on the fly or run
tasks at irregular intervals.

Earliest deadline first

The operating system tracks the time of the neadliee for all tasks. At each scheduling point,
the scheduler selects the task with the closestlidea This is a priority-based scheduler, but
with the addition that it calculates the deadliokseal-time tasks at each timer tick and adjusts
priorities as appropriate. If new priorities arsigaed, this might mean new tasks are run and,
therefore, that a context switch (which we disdass in this chapter in the section "Context
switch") must take place. One disadvantage tositheduler is that it has a large computational
overhead.

Minimal laxity first
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The operating system tracks deadlines and thetbrmemplete the remaining work for each
task. The scheduler selects the task with leagtyyJaxhere laxity is the available time minus the
remaining work time, and the available time isdeadline time minus the current time. The
theory behind this scheduling algorithm is thatttmek with the least "time to spare” can least
afford to yield the processor. The exact order bich tasks run may differ from the earliest-
deadline-first scheduler.

Resource reservation

When a task is created, it states its requiremariesms of deadlines, processor usage, and other
relevant resources. The operating system shouldt #temnew task only if the system can
guarantee those resources without making any ¢direlady admitted) tasks fail.

The scheduling algorithm you choose depends on goals. Different algorithms yield different
results. Let's suppose you're given 10 jobs, and @l take a day to finish. In 10 days, you wilve
all of them done. But what if one or more has adtiea? If the ninth task given to you has a deadim
three days, doing the tasks in the order you recéigm will cause you to miss that deadline.

The purpose of a real-time scheduling algorithioisnsure that critical timing constraints, such as

deadlines and response time, are met. When negedsaisions are made that favor the most critical
timing constraints, even at the cost of violatirigers.

To demonstrate the importance of a scheduling eltgor consider a system with only two tasks, which
we'll call Task 1 and Task 2. Assume these are petiodic tasks with periods T1 and T2, and forheac
task, the deadline is the beginning of its nextey€ask 1 has T1 = 50 ms and a worst-case ex@cutio
time of C1 = 25 ms. Task 2 has T2 = 100 ms and @@ ms.
Does the processor have enough time to handletasits? We can start answering this question by
looking at how much of the processor time each tesds in its worst case—its utilization. The
utilization of task i is:

Ui = G/T;
Thus, if U1 = 50 percent and U2 = 40 percent, thal requested utilization is:

U= U1+ U2 = 90 percent

It seems logical that if utilization is less tha@Dlpercent, there should be enough available CfR¥ tb
execute both tasks.

Let's consider a static priority scheduling aldart where task priorities are unique and cannohgéa
at runtime. With two tasks, there are only two flmbtes:

« Case 1: Priority(T1) > Priority(T2)
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« Case 2: Priority(T1) < Priority(T2)
The two cases are shownHkigure 10-1In Case 1, both tasks meet their respective desdlin Case 2,
however, Task 1 misses a deadline, despite 10 adtie time, because Task 2's higher priority
required it to be scheduled first. This illustraties importance of priority assignment.

Figure 10-1. Scheduling outcome examples

(7 )
Case 1: P(ty)>P(Ly) First dealdline t Second deadline ti.ﬁrst deadline 1,
FI I.L'I 2}'] 30 40 50 EJJ }:l'] 80 9% ll?ﬂ 1 ]ﬂ
t, It T; completes before ty completes before t; completes before
1 2 first deadline second deadline first deadline
= -/
& N
Case 2: P(t;)<P(ty) First dealdline t Second deadline tl,ﬁrst deadline t;
0 10 20 30 40 50 60 70 80 %0 100 110
t; complete before  t; misses t; executes again to
t . b first deadline first deadline  meet second deadline

> /)

Real-time systems sometimes require a way to sharprocessor that allows the most important tasks
to grab control of the processor as soon as theg iteTherefore, most real-time operating systems
utilize a priority-based scheduling algorithm teapports preemption. This is a fancy way of sayiag

at any given moment, the task that is currentipgisihe processor is guaranteed to be the highest-
priority task that is ready to do so. Lower-prigiiasks must wait until higher-priority tasks aireghed
using the processor before resuming their work. Sdieduler detects such conditions through intésrup
or other events caused by the software; these ®aeatcalled scheduling points.

Figure 10-2shows a scenario of two tasks running at diffepeiatrity levels.
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Figure 10-2. Priority scheduling of two tasks

N —

Preemption Relinquish

Task B ready to run Task B completes its work

There are two tasks ffigure 10-2 Task A and Task B. In this scenario, Task B highér priority than
Task A. At the start, Task A is running. When T8sis ready to run, the scheduler preempts Task A
and allows Task B to run. Task B runs until it kasmpleted its work. At this point, control of the
processor returns to Task A, which continues itskvimm where it left off.

When a priority-based scheduling algorithm is usieid,also necessary to have a backup scheduling
policy for tasks with the same priority. A commarteduling algorithm for tasks with the same priorit
is round robin. IrFigure 10-3we show a scenario in which three tasks are ngnini order to
demonstrate round robin scheduling with a timeeslio this example, Tasks B and C are at the same
priority, which is higher than that of Task A.

Figure 10-3. Priority scheduling of three tasks

Preemption Relmql

TaskBreadytorun | Task B time slice ends Task C completes its work Task B completes i
Task C ready to run
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In the scenario shown Hgure 10-3 Task A is running when Task B becomes readymo Task A is
preempted so that Task B can run. While Task Bnsing, Task C also becomes ready to run. The
scheduler therefore allows Task B to run for a tglee period. After this period expires, the salled
gives Task C an opportunity to run. Then Task Cuetes its work. Because Task B still has work to
complete and has the highest priority of all retabks, the scheduler allows Task B to run. Oncé& Bas
completes its work, Task A can finish.

10.2.2. Scheduling Points

You might be asking yourself how the scheduler—Whscalso a piece of software—gets an
opportunity to execute and do its job. That is vereeheduling points enter in. Simply stated, sclieglu
points are the set of operating system eventgdsatt in a run of the scheduler code. Following st
of scheduling points:

Task creation
When a task is created, the scheduler is calleglext the next task to be run. If the currently

executing task still has the highest priority dfthé ready tasks, it will be allowed to continue
using the processor. Otherwise, the highest-pyioeiady task will be executed next.

Task deletion
As in task creation, the scheduler is called dutasi deletion. However, in the case of task

deletion, if the currently running task is beindeded, a new task is always selected by virtue of
the fact that the old one no longer exists.

Clock tick
The clock tick is the heartbeat of the systens H periodic event that is triggered by a timer
interrupt (similar to the one we have already dssed). The clock tick provides an opportunity

to awaken tasks that are waiting for a certaintleiod time to pass before taking their next
action.

Task block

When the running task makes a system call thakb|dbat task is no longer able to use the
processor. Thus, the scheduler is invoked to seleetw task to run.
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Task unblock

A task might be waiting for some event to take glatich as for data to be received. Once the
event occurs, the blocked task becomes ready tmuexand thus is immediately eligible to be
considered for execution.

10.2.3. Locking and Unlocking

Real-time operating systems can allow a task tk flbe scheduler. Locking the scheduler prohibits it
from executing and, in turn, keeps other tasks fronming (since they cannot be scheduled). The task
that locks the scheduler maintains control of trac@ssor whether higher-priority tasks are readyo
or not. This allows the task with the schedulekltecperform operations without worrying about
thread-safe issues with other tasks. Interrupitdtiction and ISRs still run.

u Care must be taken when locking the scheduleruseda can hinder the
= responsiveness of the system. In general, lockiagtheduler should be avoided
whenever possible.

Every lock of the scheduler must have an unlocktenpart—otherwise, the system will stop running.
The following is an example of locking and unloakihe scheduler:

/* Perform task operations. */

os_scheduler_lock( );

/* Perform work while scheduler cannot run another task. */
os_scheduler_unlock( );

/* Perform other task operations. */

The operating system keeps track of the schedut&rdtate with a variable. This variable is
incremented when calls are made to lock the sckedunld decremented when unlock calls are made.
The scheduler knows it can run when the lock stateble is set to 0.

10.3. Tasks
Different types of tasks can run in an operatingtesy. For example, a task can be periodic, where it
exits after its work is complete. The task can themestarted when there is more work to be done.

Typically, however, a task runs forever, similathe infinite loop discussed Bhapter 3Each task
also has its own stack that is typically allocadetically.
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10.3.1. Task States

Remember how we said that only one task could Hgtuse the processor at a given time? That task is
said to be the running task, and no other taskean that same state at the same time. Taskaut@at
ready to run—but are not currently using the preces-are in the ready state, and tasks that aréngait
for some event external to themselves to occurrbejoing on are in the waiting stakégure 10-4

shows the relationships between these three states.

Figure 10-4. Possible states of a task

Ready

A transition between the ready and running statesirs whenever the operating system selects a new
task to run during a scheduling point. The taskwes previously running leaves the running staiel,
the new task (selected from the queue of tasksamdady state) is promoted to running. Once it is
running, a task will leave that state only if itrtenates, if a higher-priority task becomes reamyf it
needs to wait for some event external to itsetidour before continuing. In the latter case, tis& ta

said to block, or wait, until that event occurstadk can block by waiting for another task or for/&®
device, or it can block by sleeping (waiting fas@ecific time period to elapse).

When the task blocks, it enters the waiting stabel the operating system selects one of the reattg t
to be run. So, although there may be any numbtasét in each of the ready and waiting statesether
will always be exactly one task in the runningestatany time.

It is important to note that only the scheduler pasmote a task to the running state. Newly created
tasks and tasks that are finished waiting for tegternal event are placed into the ready state fihe
scheduler will then include these new ready tasktsifuture decision-making.

In order to keep track of the tasks, the operatiggem typically implements queues for each of the
waiting and ready states. The ready queue is sfteled by priority so that the highest-prioritykas at
the head of the queue. The scheduler can thery @&l the highest-priority task to run next.

10.3.1.1. Context switch
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The actual process of changing from one task tth@nas called a context switch. Task contexts are
processor-specific and sometimes compiler-spe@fiags the code that implements the context switch.
That means it must always be written in assemlriguage and is very hardware-specific. Operating
systems, especially for embedded systems, emphasizpal of minimizing the time needed to switch
task contextsEigure 10-5shows an example of a context switch operatiowdat two tasks: A (at
priority 150) and B (at a higher priority, 200).

Figure 10-5. A context switch
Task A (priority = 150) Task B (priority = 200)

1. Task A starts running.

2. A timer interrupt occurs, during which Task B
becomes ready to run.

3. After the ISR is complete, scheduler is called.

4. In the operating system scheduler’s context

switch code:
a. Task A’-_:, contextis saved. 5. Task B wakes up, with its instruction pointer
b. Task B's context s restored. pointing to the last place it was saved.

6. The operating system scheduler code exists.
7. Task B continues running where it left off.

time

10.3.1.2. The idle task

If there are no tasks in the ready state whendheduler is called, the idle task is executed. idikee
task looks the same in every operating systers.dimply an infinite loop that does nothing andearev
blocks. The idle task is completely hidden from éipplication developer. Sometimes, however, the
operating system does assign it a valid task IDgaiadity. The idle task is always considered tarbe
the ready state (when it is not running), and bseani its low priority, it may be found at the taflthe
ready list. Other tasks are sometimes referred tosar tasks to distinguish them from the idle.task

10.3.2. Task Context

The scheduler maintains information about the stheach task. This information is called the task
context and serves a purpose similar to a bookniatke earlier analogy of multiple readers, each
reader of the book is presumed to have his ownaok The bookmark's owner must be able to
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recognize it (e.g., it has his name written onatjd it must indicate where he stopped reading vileen
last gave up control of the book. This is the readmntext.

A task's context records the state of the procgasbprior to the point at which another task take
control of it. This usually consists of a pointerthhe next instruction to be executed (the insiouact
pointer), the address of the current top of theksfthe stack pointer), and the contents of thegssor's
flag and general-purpose registers.

To keep tasks and their contexts organized, theatipg system maintains some information about each
task. Operating systems written in C often keeg ithfiormation in a data structure called the task
control block. The task control block contains @nper to the task's context, the current statdeftask,

the task priority, the task entry-point functiondaany task-specific data (such as parametersasikd t
identification).

10.3.3. Task Priorities

Setting the priorities of the tasks in a systemmigortant. Care needs to be taken so that loweripyi
tasks get to do their work, just as the highersasidasks do. Otherwise, starvation of a task @ecur,
where a low-priority task is kept from doing anyrwat all.

There are several reasons that starvation may ateusystem, including the following:

« Processor overload occurs when high-priority taskaopolize the processor and are always
running or ready to run.

« Low-priority tasks are always at the end of a ptyebased event queue and, therefore, may be
permanently blocked from executing.

« Atask may be prevented from running by a bug iotlaer task; for example, one task fails to
signal when it is supposed to.

There are solutions to these problems, such as:

- Using a faster processor.

« Using a FIFO queue of tasks rather than priorityelaascheduling. This may not be possible,
depending on the implementation of the operatirsgesy. In addition, it might be appropriate in
some systems to starve low-priority tasks, butithisst be a conscious decision.

« Fixing all bugs (this is sometimes easier said thame).

10.3.3.1. Rate monotonic scheduling

The rate monotonic algorithm (RMA) is a procedwelétermine the optimal priority of each periodic
task in a system. This procedure assigns fixedipes to tasks to maximize their "schedulabilitj.”
task set is considered schedulable if all taskg mdedeadlines all the time. The algorithm is
straightforward:

Assign the priority of each task according to sipd, so that the shorter the period the higher th
priority.
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The reasoning behind this algorithm is that th& t@ish the shortest period has the least time tasio
work once it becomes ready again. In the next el@ntipe period of Task 1 is shorter than the peoibd
Task 2. Following RMA's rule, Task 1 is assigneel tiigher priority. This corresponds to Case 1 in
Figure 10-1which is the priority assignment that succeedetiéeting both deadlines.

RMA is an example of a static priority algorithmheéralternative to a static priority algorithm igth
much more complicated class of dynamic scheduhgrgsh appear on sophisticated, commercial-grade
operating systems; we don't recommend that yototdgsign a dynamic scheduler of your own. RMA
is the optimal static priority algorithm. If a parilar set of tasks cannot be scheduled using MA R

that task set cannot be scheduled using any statiGty algorithm.

One major limitation of fixed-priority scheduling that it is not always possible to fully utilizeet
processor. Even though RMA is the optimal fixedspty scheme, it has a worst-case schedulable
bound of the following:

W,=n@2%" -1)

where n is the number of tasks in a system. Aswaouwld expect, the worst-case schedulable bound for
one task is 100 percent. But as the number of iasksases, the schedulable bound decreases,
eventually approaching its limit of about 69.3 meric(In 2, to be precise).

It is theoretically possible for a set of tasksequire only 70 percent CPU utilization in sum atid

not meet all its deadlines. For example, considercase shown iRigure 10-6 The only change from
the example shown iRigure 10-1is that both the period and execution time of TA$lave been
lowered. Based on RMA, Task 1 is assigned higheripr. Despite only 90 percent utilization, Task 2
misses its first deadline. Reversing priorities ldauwot have improved the situation.

Figure 10-6. Example showing unschedulable task set
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In this case, the only way to meet all deadlings isse a dynamic scheduling algorithm, which, beea
it increases system complexity, is not availablenany operating systems.

Sometimes a particular set of tasks will have totéization above the worst-case schedulable bound
and still be schedulable with fixed priorities. €dsinFigure 10-1lis a perfect example. Schedulability
then depends on the specifics of the periods aadugion times of each task in the set, which mast b
analyzed by hand. Only if the total utilizatiorieéss than W, can you skip that manual analysis step and
assume that all the tasks will meet all their die@dl.

RMA degrades gracefully in that if just one deagllmill be missed, it is sure to be the one of the
lowest-priority task with outstanding work. Theitimal set" is the set of tasks that won't eversnany
deadlines. So, RMA works nicely for a mix of hardlaoft real-time tasks, where the hard deadlines
correspond to the highest-frequency tasks.

10.3.4. Task Mechanics

Earlier in this chapter, we discussed how the dpeyaystem makes it appear as if tasks are exgguti
simultaneously. When writing code for tasks, ibést to keep this in mind and write tasks as iy thum
in parallel. The basic operation of a task is shawigure 10-7

Figure 10-7. Basic task operation

Initialize task-
specific resources

Wait for event

Perform work

As shown inFigure 10-7 the first part initializes any task-specific \adries or other resources used by
the task. Then an infinite loop is used to perfthetask work. First, the task waits for some tgpe
event to occur. At this point, the task is blockieds in the waiting state and is put on the wajtqueue.
There are various types of events: a signal frootreer task, a signal from an ISR, and the expinatib
a timer set by the application. Once one of theeats occurs, the task is in the ready state, laad t
scheduler can run the task when processor timenfexavailable.
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The code for this basic task (using imaginary fioms) would look something like this:

void taskBasicExample(void)

{
/* Initalize all task-specific resources. */
taskBasiclnit( );
while (1)

[* Wait for the event to happen. */
os_wait_for_event(event_type);

[* Perform the work for this task. */

Application Programming Interfaces

One of the most annoying things about real-timeatpey systems is their lack of a common
API. This is a particular problem for companied thhant to share application code between
products that are based on different operatingegayst

The basic functionality of every real-time opergtsystem is much the same. Each function
represents a service that the operating systerperdorm for the application program. But
there aren't that many different services possiuhel it is frequently the case that the only
real difference between two implementations isrtte of the function.

This problem has persisted for the past severald¥es; and there is no end in sight. Yet
during that same time, the Win32 and POSIX (prowedri'paw-zicks") APIs have taken
hold on PCs and Unix workstations, respectivelySPQ short for Portable Operating
System Interface (the X was added to the end teentaound like a variant of Unix), is an
IEEE standard describing the API of a Unix-like gges model operating system.

So why hasn't a similar standard emerged for endxbdgstems? It hasn't been for a lack of
trying. In fact, the authors of the original POSitandard (IEEE 1003.1) also created a
standard for real-time systems (IEEE 1003.4b). Arfielv of the more Unix-like commercial
real-time operating systems are compliant with stésmidard API. However, for the vast
majority of application programmers, it is neceggarlearn a new API for each operating
system.

10.4. Task Synchronization
Though we frequently talk about the tasks in a it&slking operating system as completely independent

entities, that's not completely accurate. All af thsks are working together to solve a largerlprob
and must occasionally communicate with one andtheynchronize their activities. For example, ia th
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print-server device, the printer task doesn't lawework to do until new data is supplied to itdne of
the computer tasks. So the printer and computks tasist communicate with one another to coordinate
their access to common data buffers.

Operating systems contain various mechanisms itha aynchronization between two tasks. Each of
the mechanisms is useful for different scenariopaficular operating system may offer additiorral o
slightly different types of methods for synchrortiaa, so we will cover the ones commonly found in
real-time operating systems.

In Chapter 8we introduced the concept of a critical sectighich is simply a segment of code that
must be executed in its entirety before the opsgagystem is allowed to run anything else. Often a
critical section consists of a single C-languagéeshent that sets or reads a variable. We saw some
examples using interrupts @hapter 8another example could be a status variable shsitared
between a printer task and other tasks in the isyste

Remember that in a multitasking environment, yooegally don't know in which order the tasks will be
executed at runtime. One task might be writing sdata into a memory buffer when it is suddenly
interrupted by a higher-priority task. If the higtgiority task were to modify that same region of
memory, then bad things could happen. At the veagt, some of the lower-priority task's data wddd
overwritten. When a round robin scheduler is in-4as it normally is on multitasking operating
systems—even a task of the same priority can upélnd access resources.

One way to ensure the instructions that make ujgritieal section are executed in order and without
interruption is to disable interrupts. However atiikng interrupts when using an operating system ma
not be permitted and should be avoided; other nresims should be used to execute these atomic
operations. We'll explore the ones you'll find inshoperating systems.

10.4.1. Mutexes and Semaphores

One form of synchronization is a mutex (short fartual exclusion). A mutex ensures exclusive access
to shared variables or hardware. A mutex is anailsego a bathroom key in a high-traffic rest stoplyO
one person (task) is allowed to use the bathrotiarésl resource) at a time. That person (task) must
first acquire the bathroom key (mutex), of whickréds only one copy. The shopkeeper, who owns the
key, is analogous to the operating system, whichsotlve mutex.

You can think of a mutex as being nothing more thanultitasking-aware binary flag. The meaning
associated with a particular mutex must, therefoeschosen by the software designer and understood
by each of the tasks that use it. For exampled#te buffer that is shared by the printer and cderpu
task in the print server would have a mutex assediwith it. When this binary flag is set, it issased
that one of the tasks is using the shared datahbuifl other tasks must wait until that flag i®ated

(and then until they set it again themselves) leefeading or writing any of the data within thatfbu

A task must wait for and acquire a mutex beforeasing the mutex.

We say that mutexes are multitasking-aware beddasgrocesses of setting and clearing the binagy fl

are atomic. A task can safely change the statieeofrtutex without risking that a context switch will
occur in the middle of the modification. If a coxitswitch were to occur, the binary flag might b# In

Page 194



Programming Embedded Systems Second Edition

an unpredictable state, and a deadlock betweetaske could result. The atomicity of the mutexaset
clear operations is enforced by the operating systehich disables interrupts before reading or
modifying the state of the binary flag.

Mutexes are used for the protection of shared ressibetween tasks in an operating system. Shared
resources are global variables, memory bufferdgwice registers that are accessed by multiplestask
mutex can be used to limit access to such a resaarcne task at a time.

In the operating system's code, interrupts canssbbbd during the critical section. But generalhgks
should not disable interrupts. If they were allowedio so, other tasks—even higher-priority taslat t
didn't share the same resource—would not be ald@gdoute during that interval. Mutexes provide a
mechanism to protect critical sections within taskthout disabling interrupts.

Another synchronization mechanism is called a sémap A semaphore is used for intertask
synchronization and is similar to the mutex. Howggesemaphore's value can be any nonnegative
integer value.

Let's go back to the bathroom analogy. Imagine ti@mwthere are two bathrooms (shared resources) and
two keys (represented by the semaphore). We waallaw two people (tasks), but no more than two, to
simultaneously use the bathrooms. If a key is abl (the semaphore’s value is not zero), the perso

can acquire the key and use the bathroom. If i ke being used (the semphore's value is zém), t
next arriving person (task) must wait until a kegbmes available. Each time a semphore is signaled,
its value is incremented. When a semaphore is ssj(@fter the task has waited for it), its valsie i
decremented.

Semaphores are generally used as synchronizatiohamisms, with one task signaling and another
waiting. In our example of the print server, a sphwae can be used to signal to a task that incoming
data is present. As data comes into the print seitvie buffered. Once a certain amount of data is
accumulated, a semaphore can be used to signedtimguter task that it is time to process that data.
This example is similar to a relay race. In thisezghe baton is the semaphore. Only the runns)(ta
with the baton is able to run. The computer taskimgfor the incoming data is like the runner viragg
for the baton. Once the baton is passed, the nexer (computer task) can proceed.

Mutexes should exclusively be used for controliregess to shared resources. While semaphores are
typically used as signalling devices. A semapharehe used to signal a task from another taskoan fr
an ISR—for example, to synchronize activities.

10.4.1.1. Deadlock and priority inversion

Mutexes are powerful tools for synchronizing acdesshared resources. However, they are not without
their own dangers. Two of the most important protdéo watch out for are deadlock and priority
inversion.

Deadlock can occur whenever there is a circulaedépncy between tasks and resources. The simplest
example is that of two tasks: 1 and 2. Each tagkires two mutexes: A and B. If Task 1 takes mutex
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and waits for mutex B while Task 2 takes mutex B amits for mutex A, then each task is waiting for
the other to release the mutex. Here is an exaofgede demonstrating this deadlock problem:

void task1(void)

os_wait_for_mutex(mutexA);
os_wait_for_mutex(mutexB);

[* Other taskl1 work. */
}

void task2(void)
{

os_wait_for_mutex(mutexB);
os_wait_for_mutex(mutexA);

[* Other task2 work. */
}

These tasks may run without problems for a longtibut eventually one task may be preempted in
between the wait calls, and the other task will tarthis case, Task 1 needs mutex B to be reldaged
Task 2, while Task 2 needs mutex A to be releagerhisk 1. Neither of these events will ever happen.

When a deadlock occurs, it essentially brings basks to a halt, though other tasks might conttoue
run. The only way to end the deadlock is to relthetentire system, and even that won't prevenbih f
happening again.

Priority inversion occurs whenever a higher-priptask is blocked, waiting for access to a shared
resource that is currently not being used. Thishtnmpt sound like too big of a deal—after all, the
mutex is just doing its job of arbitrating access$hte shared resource—because the higher-priasty t
is written with the knowledge that at times the éoypriority task will be using the resource thegrgh
However, consider what happens when there is @ thgk with a priority level somewhere between
those two. This situation is illustratedkigure 10-8

Figure 10-8. An example of priority inversion
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In Figure 10-8there are three tasks: Task H (high priority)ski®1 (medium priority), and Task L (low
priority). Task L becomes ready first and, shottlgreafter, takes the mutex. Now, when Task H
becomes ready, it must block until Task L is dorith their shared resource. The problem is that Task
M, which does not even require access to that respgets to preempt Task L and run, though it will
delay Task H from using the processor. Once TasloMpletes, Task L runs until it releases the
semaphore. Finally, at this point Task H getsliance to run. This example shows how the task
priorities can be violated because of the mutexispdetween Task H and Task L.

Several solutions to this problem have been deeeloPpne of the most widely used solutions is called
priority inheritance. This technique mandates ¢hitwer-priority task inherit the priority of anygher-
priority task that is waiting on a resource thegrgh This priority change should take place as s@on
the higher-priority task begins to wait; it shoeldd when the resource is released. This requitps he
from the operating system. If we apply this to piheceding example, the priority of Task L is incea
to that of Task H as soon as Task H begins waftinghe mutex. Once Task L releases the mutex, its
priority is set to what it was before. Task L canbe preempted by Task M until it releases the rjute
and Task H cannot be delayed unnecessarily.

Another solution is called priority ceilings. Inisrcase, a priority value is associated with easlurce;
the scheduler then transfers that priority to @sk that accesses the resource. The priority assbign
the resource is the priority of its highest-priptitser, plus one. Once a task finishes with theues,

its priority returns to normal. One disadvantagesihg priority ceilings is that the priority levielr

tasks using the mutex must be known ahead of tarteesproper ceiling value can be set. This means
the operating system cannot do the job automaiéailyou. Another disadvantage is that if the iogjl
value is set too high, other unrelated tasks wikhripy levels below the ceiling can be locked fnatm
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executing. The priority ceiling is used even wheionity inversion is not occurring, as a prophylact
measure.

The need for synchronization mechanisms needs todaght out during the design of the software.
Once designed into the software, everyone musthgsmutex properly in order to access the shared
resource. If someone breaks the rule, the softwdr@ot always operate as designed. In large,
multiprogrammer projects, it can be hard for digf@rprogrammers to realize that a resource is dhare

10.5. Message Passing

While semaphores can be used to signal from okedaamnother, there may be times when data needs to
be passed in addition to the signal. For this psepoperating systems frequently provide another
mechanism called a message queue (or mailbox).

The operating system handles the buffering ancebuffanagement for message passing as well as the
safe communication of data between tasks. Messaggng is therefore an alternative to the simple
expedient of storing data in a global variable, afidrs a much cleaner and more bug-free method of
data exchange. Real-time operating systems typioal pointers for accessing the message data for
reasons of speed and memory conservation.

Many applications that use message queues comsigiroducer task that sends the data and a
consumer task that receives it. There can be nipgpducer and/or consumer tasks. The message
content is typically understood between the seaddrreceiver ahead of time.

If the message queue is full, the operating syst@mblock the sending task until space is availtdle
the message. Similarly, if no message is preseahuwiie receiver attempts to read the message, the
operating system blocks the receiving task. The sizhe queue may vary depending on the message
traffic.

10.6. Other Functionality
We have now covered the basic mechanisms thabameonly found in most real-time operating
systems. Several other features may be includgeindiing on the operating system, to perform various

other useful operations. Some of the other mechenmmonly found in real-time operating systems
are:

Event flags
These allow a task to wait for multiple events ¢owr before unblocking. Either all of the events

must occur (the events are ANDed together) or ditlgenevents may occur (the events are ORed
together).
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Condition variables

These are similar to a counting semaphore wheaskasignals another task to wake up;
however, unlike a semaphore, if no task is curyemtliting on the condition variable when it is
signaled, the signal is lost.

Spinlocks

These are similar to a mutex and are typically useymmetric multiprocessing (SMP)
systems. Like a mutex, a spinlock is a binary fleag a task attempts to claim. If the flag is not
set, the task is able to obtain the spinlock. éfflag is set, the task will spin in a loop, consta
checking to see when the flag is not set. This treglem wasteful (and it can be); however, it is
assumed that the spinlock is only held for a végrisperiod of time, and this CPU must wait for
software runnning on the other CPU to progress dingway.

Counters and alarms
A counter keeps track of the number of times aifipevent has occurred. An alarm is used in
conjunction with a counter to wake up a task (s ihwill take action) when a particular
number of events have occurred.

10.7. Interrupt Handling

There are several issues you need to be awareesf indndling interrupts in embedded systems that use
an operating system, including:

Interrupt priority

Interrupts have the highest priority in a system-ereliigher than the highest operating system
task. Interrupts are not scheduled; the ISR exsauitside of the operating system's scheduler.

Disabling interrupts

Because the operating system code must guarasteat# structures' integrity when they are
accessed, the operating system disables intemluptsg operations that alter internal operating
system data, such as the ready list. This incraasasterrupt latency. The responsiveness of the
operating system comes at the price of longerrnumpdatency.
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When a task disables interrupts, it prevents thedwaler from doing its job. Tasks should not
disable interrupts on their own.

Interrupt stack

Some operating systems have a separate stackfgpdloe execution of ISRs. This is important
because, if interrupts are stored on the same ato&gular tasks, each task's stack must
accommodate the worst-case interrupt nesting sicer@arch large stacks increase RAM
requirements across all n tasks.

Signaling tasks

Because ISRs execute outside of the scheduleratteayot allowed to make any operating
system calls that can block. For example, an ISiRatwait for a semaphore, though it can
signal one.

Some operating systems use a split interrupt hagpdicheme, where the interrupt processing is divide
into two parts. The first part is an ISR that hassdhe bare minimum processing of the interrupgé Th
idea is to keep the ISR short and quick.

The second part is handled by a DSR. The DSR hatitkemore extensive processing of the interrupt
event. It runs when task scheduling is allowed; &y, the DSR still has a higher priority than #ask
in the system. The DSR is able to signal a tagletéorm work triggered by the interrupt event.

For example, in the print server device, an infgrraight be used to handle incoming data from the
computers on the Ethernet network. The Ethernatralber would interrupt the processor when a packet
is received. Using the split interrupt handlingestie, the ISR would handle the minimal initial work:
determining the interrupt event, masking furthdrdfnet interrupts, and acknowledging the interrupt.
The ISR would then tell the operating system tothenDSR, which would then handle the low-level
data packet processing before passing the da@ atask for further processing.

10.8. Real-Time Characteristics

Engineers often use the term real-time to desaaneputing problems for which a late answer is ab ba
as a wrong one. These problems are said to haddiress and embedded systems frequently operate
under such constraints. For example, if the emle:ddéware that controls your antilock brakes ngsse
one of its deadlines, you might find yourself inaotident. So it is extremely important that the
designers of real-time embedded systems know duegythey can about the behavior and performance
of their hardware and software. In this sectionwilediscuss the performance characteristics af-re

time operating systems.
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The designers of real-time systems spend a largeiainof their time worrying about worst-case
performance. They must constantly ask themselvestipuns such as: what is the worst-case amount of
time between the moment a human operator pressdésdke pedal and the moment an interrupt signal
arrives at the processor? What is the worst-caserumpt latency? And what is the worst-case amofint
time for the software to respond by triggering bihaking mechanism? Average or expected-case
analysis simply will not suffice in such systems.

Most of the real-time operating systems availabtiay are designed for possible inclusion in reakti
systems. Ideally, their worst-case performanceeis wnderstood and documented. To earn the
distinctive title of "real-time operating systemaji operating system should be deterministic ané hav
guaranteed worst-case interrupt latency and costeitth times. Given these characteristics and the
relative priorities of the tasks and interruptyaur system, it is possible to analyze the worseca
performance of the software.

An operating system is said to be deterministtbéf worst-case execution time of each of the system
calls is calculable. Operating system designers take real-time behavior seriously usually publsh
data sheet that provides the minimum, averagepmandmum number of clock cycles required by each
system call. These numbers are usually differendifferent processors. Therefore, it is importahien
comparing these numbers that equivalent (or bgéietthe same) hardware is used. But it is reasenab
to expect that if the algorithm is deterministicame processor, it will be so on any other. Thealct
times can differ.

Interrupt latency is a key in determining the regpeeness of an RTOS. An RTOS adds to the interrupt
latency because it must do some processing oncgarupt occurs. The amount of time this procassin
takes is an important characteristic of the RTOSafoeal-time system. When an interrupt occurs, the
processor must take several steps before exedhegn@R. First, the processor must finish executireg
current instruction. That probably takes less thia@ clock cycle, but some complex instructions irequ
more time than that. Next, the interrupt type nhestecognized. This is done by the processor haslwa
and does not slow or suspend the running task.,TherRTOS must process the interrupt and
determine which ISR is called. Finally, and onlyniferrupts are enabled, the ISR that is associattd

the interrupt is started.

Of course, if interrupts are ever disabled witthia bperating system, the worst-case interrupt ¢gten
increases by the maximum amount of time that theywaned off. But operating systems have certain
places where interrupts must be disabled. Thestharaternal critical sections—relating to opangti
system structures—described earlier; there ardtemative methods for the operating system toqartot
them. Each operating system will disable interrdpts different length of time, so it is importahat
you know what your system's requirements are. @aktime project might require a guaranteed
interrupt response time as short as 10 ms, whidéhan requires only 100 ms.

The third real-time characteristic of an operasggtem is the amount of time required to perform a
context switch. This is important because it repnés overhead across your entire system. For exampl
imagine that the average execution time of any lbed&re it blocks is 100 ms but that the contextgw
time is also 100 ms. In that case, fully one-h&lhe processor's time is spent within the consextch
routine! Again, the actual times are usually preoespecific because they are dependent on the
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number of registers that must be saved. Be sugettthese numbers for any operating system you are
thinking of using. That way, there won't be any-lasnute surprises.

10.9. To Use or Not to Use an RTOS

The answer is...it depends. In many cases, there edear-cut answer to this question. Many embedde
systems can (and do) operate exactly as they odggusing an infinite loop, as we discussed in
Chapter 3These embedded systems do not need to be cotedlioy adding additional software, such
as an RTOS. There's no prize for making an embesigltdm more complicated.

Each project should be evaluated on its own. Stsintthe notion that you do not need an RTOS. Then
take a look at the overall system requirements.aviakst of the different software modules the syst
will need in order to meet these requirements.

Let's go back to the example of the print servetage The data-flow diagram @hapter 4s a good
starting point. Some of the modules needed foptire server are an interrupt subsystem to handle
timer and peripheral interrupts, a handler forgheallel port to communicate and send data to the
printer, a networking stack for communication wittmputers via the Ethernet controller, a debug
module that uses a serial port for output (thisasrequired, but it is helpful), and possibly amtor
and control command-line interface.

Now you can ask some questions about these mouuiles system to find out the responsibilities of
each. It might help to draw this out in your préjeotebook. How will these modules interact witlclea
other? Are the modules independent and standalode they have interdependencies? Will they need
to share memory or other hardware resources?

In the print server example, a networking stadlecgiired. This might not be something you would
want to create from scratch. Several networkingkstare available and many RTOSes include them as
well.

There may not be easy answers to some of thestanges hey are not solely based on technical
issues. In the absence of a clear-cut winnepritbably best to err on the side of what makes the
software easier to read and implement. Makingtafipros and cons might aid in the decision preces

Now, if your decision is to use an RTOS, move oth®next section for a discussion of some criteria
for determining which RTOS is best for the project.

10.9.1. RTOS Selection Process

The previous edition of this book showed how tddyour own RTOS. Despite this, we strongly
recommend using an existing operating system. ety that again: we highly recommend using an
off-the-shelf operating system rather than writyogir own. A wide variety of operating systems are
available to suit nearly every project and pockekbdJsing an off-the-shelf operating system allows
your software team to focus on the development@fipplication for the product. Granted, there ol
a learning curve to get up to speed on using tleeatipng system.
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In this section, we will discuss the process oésthg the operating system that best fits the sieéd
your project. Selecting an RTOS can be tricky. €rae plenty of criteria to consider when making th
decision. Of course, the criteria are typically giged differently from project to project and compa
to company.

Let's take a look at some of the important critesad in making an RTOS selection:

Processor support

The processor is typically the first choice in Hedware design on a project. Most RTOSes
support the popular processors (or at least procéssiilies) used in embedded systems. If the
processor used on your project is not supported mged to determine whether porting the
RTOS to that processor is an option or if it ises=ary to choose a different RTOS. Porting an
RTOS is not always trivial.

Real-time characteristics

We have already covered the real-time charactesisfian RTOS, which include interrupt
latency, context switch time, and the executioretoheach system call. These are technical
criteria that are inherent to the system and cabeahanged.

Budget constraints

RTOSes span the cost spectrum from open sourceogalty free to tens of thousands of dollars
per developer seat plus royalties for each unpipd. You need to understand what your costs
are in both cases. Open source might mean no upfosts, but there might be costs associated
with getting support when needed. You also neathtterstand the licensing details of the RTOS
you choose.

Memory usage

Clearly, in an embedded environment, memory comggrare a frequent concern. A few
RTOSes can be scaled to fit the smallest of emlmkggtems—for example, by removing
features to create a smaller footprint. Othersirecuminimum set of resources comparable to a
low-end PC. It is important to keep in mind thegudial need to change an RTOS in the future,
when memory is not as plentiful or costs need teedeced.
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Device drivers and software components

The device drivers included with an RTOS can ailléeping the development on schedule. This
reduces the amount of code you need to developaiidicular peripherals. Many RTOSes
support the common devices found in embedded sgstem

If additional features are needed, such as netwgrkiipport, graphics libraries, web interfaces,
and filesystems, an RTOS might include these and tiae code already integrated and tested.
Some RTOSes might require more fees for using tadded features. If the necessary features
are not included, you will need to identify thirdrfies that provide them so that these
components can be integrated into the system.

Technical support

This may include a number of incidents or a pedbghone support. Some RTOSes require you
to pay an annual fee to maintain a service contFamtopen source RTOSes, an open forum or
mailing list might be provided. If more specializeapport is needed, you'll have to search
around to see what is available. Popular open sdRii®OSes have companies dedicated to
providing support.

Tool compatibility

Make sure the RTOS works with the assembler, canpihker, and debugger you have already
obtained. If the RTOS does not support tools tbatgr your team are familiar with, the learning
curve will take more time.

No matter which RTOS you choose, our advice isetatlge source code if you can. The reason for this
is that if you can't get support when you needal( at 1 A.M. for a deadline coming at 8 A.M.jfdhe
operating system vendor stops supporting the pipdyau’ll be glad to be able to find and fix the
problem yourself. Some proprietary RTOSes providag object code. Find out what is provided before
you make your final decision.

With such a wide variety of operating systems aalures to choose from, it can be difficult to deci
which is the best for your project. Try putting yquocessor, real-time performance, and budgetary
requirements first. These are criteria that yolbpldy cannot change, so you can use them to narrow
the possible choices to a dozen or fewer prodiitisn you can focus on the more detailed technical
information.

At this point, many developers make their decidiased on compatibility with existing cross-
compilers, debuggers, and other development tBaisit's really up to you to decide what additional
features are most important for your project. Ndtaravhat you decide, the basic kernel and task
mechanisms will be pretty much the same as thaserided in this chapter. The differences will most
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likely be measured in processors supported, minimodhmaximum memory requirements, availability
of add-on software modules (networking protocotlissadevice drivers, and filesystems are common
examples), and compatibility with third-party demaient tools.

10.10. Additional Resources

Another good set of criteria for RTOS selection barfound in the March 1999 Embedded Systems
Programming article "Selecting a Real-Time Opepfiystem,” which can be found online at
http://www.embedded.conThe list of vendors might be a bit outdated, thetinformation is still very
useful.

If you would like to dig deeper into the inner wonggs of real-time operating systems, here are two
resources we suggest: MicroC/OS-II: The Real-Tineenél, by Jean J. Labrosse (CMP Books) and
Real-Time Concepts for Embedded Systems, by QirapdiCaroline Yao (CMP Books).

Chapter 11. eCos Examples

Henry Hill: You're a pistol, you're really funnyod're really funny. Tommy DeVito: What do you mean
I'm funny?Henry Hill: It's funny, you know. It'sy@od story, it's funny, you're a funny guy.Tommy
DeVito: What do you mean, you mean the way | tétkat?Henry Hill: It's just, you know. You're just
funny, it's...funny, the way you tell the story andrything. Tommy DeVito: Funny how? What's funny
about it?

—the movie Goodfellas

In this chapter, we will go through some examplesmobedded system code that use the operating
system mechanisms we covered in the previous ahajiger the principle that seeing real
implementations contributes to a better understandf the mechanisms. This chapter uses the real-
time operating system eCos for the examples. Theeaqis and techniques in this chapter apply torothe
RTOSes as well, but different operating systemsifferent APIs to carry out the techniques. In the
next chapter, we will run through the same examp$asg the popular Linux operating system.

11.1. Introduction

We have decided to use two operating systems éoexamples of operating system use—eCos and
Linux. Why did we choose these two? Both are opemce, royalty-free, feature-rich, and growing in
popularity. Learning how to program using them witbbably enhance your ability to be productive
with embedded systems. In addition, both operaysems are compatible with the free GNU software
development tools. And both are up and runninghenArcom board.

eCos was developed specifically for use in reabtembedded systems, whereas Linux was developed

for use on PCs and then subsequently ported tousprocessors used in embedded systems. Some
embedded Linux distributions can require a sigaificamount of resources (mainly memory and
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processing power), which are not found in most etdbd systems. Linux was originally not real-time,
but extensions are now available to add real-tieagufres.

In short, eCos is more suited in general for embddystems work, but the weight of widespread
knowledge and support tools surrounding Linux mialktractive to embedded developers, too.

We try to keep function names, and what these foin€tdo, consistent between the different examples
in this and the following chapter. This way, youn @@ncentrate on the details related to the opayati
systems. eCos includes a POSIX API, which suppostsbset of POSIX functiond. However, in the
following eCos examples, the native eCos API igluse

[l The eCos POSIX API is currently compatible wite #003.1-1996 version of the standard and
includes elements from the 1004.1-2001 version.

The instructions for setting up the eCos build emuinent and building the example eCos applications
are covered il\ppendix D Additional information about eCos can be fountrenat
http://ecos.sourceware.oag well as in the book Embedded Software Developmih eCos, by
Anthony Massa (Prentice Hall PTR).

In order to keep the examples in this chapter shard easier to read, we don't

e bother to check the return values from operatirggesy function calls (although

" 44 many eCos system calls do not return a value)etreml, it is a good idea to
validate all return codes. This provides feedbdmua potential problems and
allows you, as the developer, to make decisiottisarsoftware based on failed
calls to the operating system. Basically, it makasr code more robust and,
hopefully, less buggy.

¥
-.
L
L

11.2. Task Mechanics

In this first eCos example, we reuse the BlinkigPLprogram that was covered previously. The first
thing to learn is how to create a task. This exaneptates a task to handle the toggling of the BE®
constant rate. First, we declare the task-spedifiables such as the stack and its size, theptasiity,
and OS-specific variables.

eCos uses the term thread instead of task in itaA® variable types. These
terms mean the same thing in the embedded systamesxt.

L]
"ﬂ-
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The example program provides two variables to éGa@dlow it to track the task. The variable
ledTaskObj stores information about the task, such as iteatistateledTaskHdl  is a unique value
assigned to the task.
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The stack for our task is statically declared a&sdatrayledTaskStack , which is 4,096 bytes in size. An
arbitrary priority of 12 is assigned for this ta3ke code also defines the number of clock ticks pe
second, a value specific to the Arcom board's exeagp. This makes it easy to change the tick iaterv
to tune system performance.

#define TICKS_PER_SECOND (100)

#define LED_TASK_STACK_SIZE (4096)
#define LED_TASK_PRIORITY (12)

/* Declare the task variables. */

unsigned char ledTaskStack[LED_TASK_STACK_SIZE];
cyg_thread ledTaskObj;

cyg_handle_t ledTaskHdI;

Next we show the code for performing the toggle. Miee attempted to reuse code from the original
Blinking LED example. Théedinit  andledToggle LED driver functions remain unchanged from the
code described i€@hapter 3

The tasklinkLedTask  immediately enters an infinite loop. The infinib®p is used to keep the task
continually running and blinking the LED. The firstutine called in the infinite loop is

cyg_thread_delay . This is an eCos function that suspends a taskauspecified number of clock ticks
have elapsed. The parameter passed into the drlage determines how long to suspend the task and
is based on the system clock used in eCos. Aptiigt, theblinkLedTask  is blocked and put in the
waiting state by the eCos scheduler.

Once the timer expires, the eCos scheduler putsitikeedTask  into the ready queue. If no other
higher-priority tasks are ready to execute (whgthe situation in this case), the scheduler roes t
blinkLedTask ; the task continues executing from the point attvit was blocked.

Next,ledToggle is called in order to change the state of the LBBDenledToggle completes and
returnscyg_thread_delay  is called to delay for another 500 ms. bhekLedTask is placed back in
the waiting state until the time elapses again.

#include <cyg/kernel/kapi.h>
#include "led.h"

*

* Function: blinkLedTask

*

* Description: This task handles toggling the gree nLED at a
* constant interval.

*

* Notes:

*

* Returns:  None.

*

khkkkkhkkkhhkkkkkkkhhhkkkhhkkhhhkkhhkkhhhkkhkhkxhhhx *k% * xx/

void blinkLedTask(cyg_addrword_t data)
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while (1)
{

/* Delay for 500 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 2);

ledToggle( );

Following is the code to create and start the LEgkt The first thing to notice is that insteadrf t
functionmain , eCos programs use a function cablegl user_start

The first job ofcyg_user_start is to initialize the LED by calling the functioedinit . Next, the
blinkLedTask  task is created. In eCos, tasks created duritiglination (when the scheduler is not
running) are initially suspended. To allow the stiier to run the taskyg_thread_resume is called.
Additionally, the scheduler does not run unyt_user_start exits; then the eCos scheduler takes
over.

/************************************************** *k% *k*k

*

* Function: cyg_user_start

*

* Description: Main routine for the eCos Blinking LED program. This
* function creates the LED task.

*

* Notes: This routine invokes the scheduler upon exit.

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void cyg_user_start(void)

{
[* Configure the green LED control pin. */
ledInit( );

* Create the LED task. */
cyg_thread_create(LED_TASK_PRIORITY,
blinkLedTask,
(cyg_addrword_t)0,
"LED Task",
(void *)ledTaskStack,
LED_TASK_STACK_SIZE,
&ledTaskHdl,
&ledTaskObj);

/* Notify the scheduler to start running the ta sk. */
cyg_thread_resume(ledTaskHdl);
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The previous example demonstrates how to creaeme, and delay a task in eCos. Other task
operations include deleting tasks (which can samegtioccur by returning from the task function),
yielding to other tasks in the system, and othestrarisms for suspending/resuming tasks.

11.3. Mutex Task Synchronization

Now we attack the next big job in task managemenhich is to synchronize tasks. As we saw in
Chapter 10a mutex is a common mechanism for getting twepehdent tasks to cooperate. For our
eCos mutex example, two tasks share a common \aridbe first task incrementing it and the second
decrementing it at set intervals. The mutex is usqutotect the shared variable.

Before accessing a shared resource, a task takesuiex; once finished, the task releases the nfatex
other tasks to use. Each operating system defirese ttwo operations in its own way. For example,
eCos offers lock (taking the mutex) and unlockgasing the mutex) functions.

To keep track of the multiple tasks waiting on slaee mutex, the mutex structure contains a queue of
tasks that are waiting on that particular mutexs Tjueue is typically sorted by priority so thehegt-
priority task waiting for the mutex executes fit®hne possible result of releasing the mutex coaltbb
wake a task of higher priority. In that case, thleasing task would immediately be forced (by the
scheduler) to give up control of the processofauor of the higher-priority task.

The main functiongyg_user_start , which is shown next, calls tlkeg_mutex_init  function to
initialize mutexes, such as the one we've nashe@dVvariableMutex . This mutex is used to protect
the variablegSharedvariable . After returning from the mutex initialization ¢athe mutex is available
to the first task that takes it. Once the muteiigalized, the two tasks are created and theriestan a
manner like that shown earlier.

u It is important to note that the mutex is initi@dzprior to the creation of any tasks

— that use this mutex. Any synchronization mechanised by a task must be
initialized prior to its use by the task. If a tag&re to try to take an uninitialized
mutex, undefined behavior or a system crash caddlt.

You may notice that the functiatebug_printt  is called at the end ofg_user_start . This is eCos's
lightweight version oprintf

#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>

cyg_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0;

/ *k%k *kk *k% *k% *k*k

*

* Function: cyg_user_start
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*

* Description: Main routine for the eCos mutex exa mple. This function

* creates the mutex and then the incr ement and decrement
* tasks.

*

* Notes: This routine invokes the scheduler upon exit.

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx *k% *k*k x/

void cyg_user_start(void)

{
[* Create the mutex for accessing the shared va riable. */
cyg_mutex_init(&sharedVariableMutex);

/* Create the increment and decrement tasks. */
cyg_thread_create(INCREMENT_TASK_PRIORITY,
incrementTask,
(cyg_addrword_t)0,
"Increment Task",
(void *)incrementTaskStack,
INCREMENT_TASK_STACK_SIZE,
&incrementTaskHdl,
&incrementTaskObj);

cyg_thread_create(DECREMENT_TASK_PRIORITY,
decrementTask,
(cyg_addrword_t)0,
"Decrement Task",
(void *)decrementTaskStack,
DECREMENT_TASK_STACK_SIZE,
&decrementTaskHdl,
&decrementTaskObj);

/* Notify the scheduler to start running the ta sks. */
cyg_thread_resume(incrementTaskHdl);
cyg_thread_resume(decrementTaskHdl);

diag_printf("eCos mutex example.\\n");

TheincrementTask  function first delays for three seconds. After detay, the function tries to take the
mutex by callingyg_mutex_lock , passing in the mutex it wishes to acquire. Ifrthgex is available,
cyg_mutex_lock  returns and the task can proceed. If the mutextisvailable, the task blocks at this
point (and is placed in the waiting state by theesitiler) and waits for the mutex to be released.

Once thencrementTask  task obtains the mutex, the shared varigbtaredvariable  is incremented
and its value is output. The mutex is then reledsechllingcyg_mutex_unlock , again passing in the
mutex to release as a parameter. Unlikecgbe mutex_lock function, the unlock function never
blocks, although it may cause a reschedule.
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*

* Function: incrementTask

*

* Description: This task increments a shared varia ble.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx *k% *k*k x/

void incrementTask(cyg_addrword_t data)

while (1)
{

/* Delay for 3 seconds. */
cyg_thread_delay(TICKS_PER_SECOND * 3);

/* Wait for the mutex to become available. */
cyg_mutex_lock(&sharedVariableMutex);

gSharedVariable++;

diag_printf("Increment Task: shared variabl e value is %d\\n",
gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedVariableMutex);

ThedecrementTask function is similar to the previous increment taSkst, the task delays for seven
seconds. Then the task waits to acquiresbheedvariableMutex . Once the task gets the mutex, it
decrements thgSharedvariable ~ value and outputs its value. Finally, the taskasés the mutex.

/************************************************** *k% *k*k *

*

* Function: decrementTask

*

* Description: This task decrements a shared varia ble.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void decrementTask(cyg_addrword_t data)
while (1)

/* Delay for 7 seconds. */
cyg_thread_delay(TICKS_PER_SECOND * 7);
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/* Wait for the mutex to become available. */
cyg_mutex_lock(&sharedVariableMutex);

gSharedVariable--;

diag_printf("Decrement Task: shared variabl e value is %d\\n",
gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedVariableMutex);

11.4. Semaphore Task Synchronization
The eCos semaphore example is similar to a pusbrblight switch using an LED for the light. The
following example has two tasks: a producer andrsemer. The producer tagkpducerTask

monitors the button labeled SWO on the Arcom bsaadd-on moduldzigure 11-1shows the button
used in this example.

Figure 11-1. Arcom board add-on module's SWO button
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When the SWO button is pressed, the producer tgakls the consumer task using a semaphore. The
consumerconsumerTask , waits for the semaphore signal from the prodtaesk. Upon receiving the
signal, the consumer task outputs a message agkbsatpe green LED.

The main functiongyg_user_start  , starts by initializing the LED by callingdinit . Next, the
semaphore is initialized with a call ¢gy_semaphore_init . The initial value of the semaphore,
semButton , IS set to zero so that the consumer task thaaitng does not execute until the semaphore
is signaled by the producer task. Lastly, the tagk$ are created and resumed, as in the prior égamp
and then a message is output signifying the stdhteoprogram.

#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
#include "led.h"

cyg_sem_t semButton;

/****************************************-k********* F*hkkkkkkkhhkkkhhkkhk

*

* Function: cyg_user_start
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*

* Description: Main routine for the eCos semaphore

* function creates the semaphore and
* consumer tasks.

*

* Notes: This routine invokes the scheduler

*
* Returns:  None.
*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx

void cyg_user_start(void)

{
/* Configure the green LED control pin. */
ledInit( );

[* Create the semaphore with an initial value o
cyg_semaphore_init(&semButton, 0);

[* Create the producer and consumer tasks. */
cyg_thread_create(PRODUCER_TASK_PRIORITY,
producerTask,
(cyg_addrword_t)0,
"Producer Task",
(void *)producerTaskStack,
PRODUCER_TASK_STACK_SIZE,
&producerTaskHdl,
&producerTaskObj);

cyg_thread_create(CONSUMER_TASK_PRIORITY,
consumerTask,
(cyg_addrword_t)0,
"Consumer Task",
(void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE,
&consumerTaskHdl,
&consumerTaskObj);

/* Notify the scheduler to start running the ta
cyg_thread_resume(producerTaskHdl);
cyg_thread_resume(consumerTaskHdl);

diag_printf("eCos semaphore example - press but

TheproducerTask contains an infinite loop that first delays form@ and then checks to see whether
the SWO button has been pressed, by calling thetiimbuttonDebounce
this function in a moment). The delay interval v8atected in order to ensure the task is responsive
when the button is pressed. For additional inforome&bout selecting sampling intervals, read the

sidebar later in this chapter titlé8witch Debouncing
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When the SWO button is pressed, the semapbar@utton , is signaled by calling
cyg_semaphore_post , which increments the semaphore value and waleesahsumer task waiting on
this semaphore. The producer task then returnototaring the SWO button.

#include "button.h"

/ *k%k *kk *k% *k% *k%k

*

* Function: producerTask

*

* Description: This task monitors button SWO0. Once pressed, the button
* is debounced and the semaphore is s ignaled, waking the
* waiting consumer task.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void producerTask(cyg_addrword_t data)

{
int buttonOn;

while (1)
{

/* Delay for 10 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 100);

/* Check whether the SWO button has been pr essed. */
buttonOn = buttonDebounce( );

/* If button SWO was pressed, signal the co nsumer task. */
if (buttonOn)
cyg_semaphore_post(&semButton);

Now let's take a look at the functionttonDebounce . The debounce code is from the June 2004
Embedded Systems Programming article "My Favouwti@re Debouncers," which can be found
online athttp://www.embedded.com

The debounce function is called in the producek éaery 10 ms to determine whether the SWO button
has been pressed. As showrrigure 11-1 button SWO is located on the add-on module. Trecom
board's VIPER-Lite Technical Manual and the VIPEQ-Technical Manual describe how the add-on
module's buttons are connected to the processeradti-on module schematics, which are found in the
VIPER-1/O Technical Manual, can be used to traeecittnnection from the button back to the processor.

The button SWO is read from the signal INO, as showthe switches section in the VIPER-I/O
Technical Manual. According to the VIPER-Lite Teatah Manual, the INO signal value is retrieved by
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reading address 0x14500000. The least significaatt bhis address contains the current stateef th
button SWO0. The Arcom board's documentation sthtgsthe default voltage level on the button switch
is high and that when the button is pressed, theevahanges to low.

The debounce function first callsttonRead , which returns the current state of the SWO butldre
current state of the SWO button is shifted intowhBablebuttonState . When the leading edge of the
switch closure is debounced and detectedgis returned.

For additional information about debouncing buttand switches, take a look at the sidelsawitch
Debouncind later in this chapter.

/ *k%k *kk *k% *k% *k%k

*

* Function: buttonDebounce

*

* Description: This function debounces buttons.

*

* Notes:

*

* Returns: TRUE if the button edge is detected , otherwise
* FALSE is returned.

*

khkkkkhkkkkhhkkkhkkkhhhkkhhkkhhkhkkhhkkhhhkkhhkxhhhx *k% ** xx/

int buttonDebounce(void)

{
static uintl6_t buttonState = 0;

uint8_t pinState;
pinState = buttonRead( );

[* Store the current debounce status. */
buttonState = ((buttonState << 1) | pinState | 0xE000);

if (buttonState == 0xF000)
return TRUE;

return FALSE;

TheconsumerTask contains a simple infinite loop: wait for the seahare to be signaled, then print a
message once the signal is received. The consasieniaits for the semaphore signal by calling
cyg_semaphore_wait , which blocks the task if the value of the semaphs equal to O.

Once the semaphore signal is received, the consiasieputputs a message that the button was pressed
and toggles the green LED by calliegToggle . After the LED is toggled, the consumer task res/ey
waiting for another semaphore signal.

/************************************************** *kk * *%

*
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* Function: consumerTask

*

* Description: This task waits for the semaphore s ignal from the

* producer task. Once the signal is r eceived, the task
* outputs a message.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxhhhx *k% * xx/

void consumerTask(cyg_addrword_t data)

while (1)

{
/* Wait for the signal. */

cyg_semaphore_wait(&semButton);
diag_printf("Button SWO0 was pressed.\\n");

ledToggle( );

We cover another example using semaphores in ttieséeCos Interrupt Handliigater in this
chapter.

11.5. Message Passing

In this section, we'll discuss a programming teghaithat's useful for certain situations where you
divide up tasks—in particular, when you can speaifyroducer task that generates data, and a consume
task that processes the producer's output. Thefusessage passing prevents tasks from stepping on
each other's data and also simplifies coding.

The message passing example is similar to the $ightth-semaphore example shown earlier in this
chapter, where the producer task waits for the $Wn to be pressed, and the consumer task outputs
a message. The difference this time is that a rgesbat contains the number of times the button has
been pressed is passed from the producer to trsaicm@r. The consumefgnsumerTask , waits for the
message from the producer tasikducerTask . Once the message is received by the consumeiitask
outputs a message and toggles the green LED.

Message queues in eCos are called mailboxes. Tbeifog main functiongyg_user_start , starts by
initializing the LED by callingedinit . Next, the mailbox is initialized with a call to

cyg_mbox_create . The mailbox create function is passedboxHdl (a handle used for subsequent
calls to perform operations with that specific rha®) andmailbox (an area of memory for the kernel's
mailbox structure). Lastly, the two tasks are @dand resumed, as we saw in the prior example, and
then a message is output, signifying the starefarogram.
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#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
#include "led.h"

cyg_handle_t mailboxHdl;
cyg_mbox mailbox;

/**************************************************

*

* Function: cyg_user_start

*

* Description: Main routine for the eCos mailbox p

* function creates the mailbox and th

* consumer tasks.

*

* Notes: This routine invokes the scheduler

*

* Returns:  None.

*

*k%k *kk *k% *k%

void cyg_user_start(void)

{

[* Configure the green LED control pin. */
ledInit( );

[* Create the mailbox for sending messages betw

cyg_mbox_create(&mailboxHdl, &mailbox);

[* Create the producer and consumer tasks. */

*k% *k*k

rogram. This
e producer and

upon exit.

nnn/

een tasks. */

cyg_thread_create(PRODUCER_TASK_PRIORITY,

producerTask,

(cyg_addrword_t)0,

"Producer Task",

(void *)producerTaskStack,
PRODUCER_TASK_STACK_SIZE,
&producerTaskHdl,
&producerTaskObj);

cyg_thread_create(CONSUMER_TASK_PRIORITY,

consumerTask,

(cyg_addrword_t)0,

"Consumer Task",

(void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE,
&consumerTaskHdl,
&consumerTaskObj);

/* Notify the scheduler to start running the ta
cyg_thread_resume(producerTaskHdl);
cyg_thread_resume(consumerTaskHdl);

diag_printf("eCos mailbox example - press butto

sks. */

n SWO0.\\n");
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TheproducerTask  shown next begins by initializing the button presant variable,

buttonPressCount , to zero, and then enters an infinite loop. Inltdwp, the task delays for 10 ms and
then checks to see whether the SWO button hasgressed with a call to the function

buttonDebounce

When the SWO button is presseditonPressCount IS incremented and the value is sent to the waitin
consumer task via the mailbox. In eCos, messageseat in mailboxes using the function
cyg_mbox_put , which takes two arguments: the mailbox handl¢his casenailboxHdl , and the
message to send. If there is room in the maildexmessage is placed there immediately; othertise,
task blocks until room is available.

#include "button.h"

/************************************************** *k% ** *%

*

* Function: producerTask

*

* Description: This task monitors button SWO0. Once pressed, the button
* is debounced and a message is sent to the waiting

* consumer task.

*

* Notes: This function is specific to the Ar com board.

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void producerTask(cyg_addrword_t data)

{
uint32_t buttonPressCount = 0;

int buttonOn;

while (1)
{

/* Delay for 10 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 100);

/* Check if the SWO0 button has been pressed ¥
buttonOn = buttonDebounce( );

/* If button SWO was pressed, send a messag e to the consumer task. */
if (buttonON)

buttonPressCount++;
cyg_mbox_put(mailboxHdl, (void *)button PressCount);

TheconsumerTask , shown in the code that follows, contains an itditoop that waits for an incoming
message and then prints the message once it'sedc&he consumer task waits for an incoming
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message by callinggg_mbox_get and passing in the mailbox handtejlboxHdl . The mailbox get
function call blocks until the producer task seadsessage. The message, which is the button press
count, is stored in the local varialbteMsg . After the message is output and the green LEDggled,
the consumer task returns to waiting for anothessage.

/ * *k%k *kk *kk *k% *k%k

*

* Function: consumerTask

*

* Description: This task waits for a message from the producer task.
* Once the message is received via th e mailbox, it

* outputs a message and toggles the g reen LED.

*

* Notes:

*

* Returns:  None.

*

* *kk *kk *kk *kk nnn/

void consumerTask(cyg_addrword_t data)

{
uint32_t rcvMsg;

while (1)

{ /* Wait for a new message. */
rcvMsg = (uint32_t)cyg_mbox_get(&mailboxHdl );
diag_printf("Button SWO pressed %d times.\\ n", rcvMsg);
ledToggle( );

Most operating systems, including eCos, have amwitiAPI functions for various synchronization and
message passing operations. For example, eCoslascthe functionsyg_mbox_tryput  and
cyg_mbox_tryget  that return false if they are unsuccessful atipgitbr getting a message in the
mailbox, instead of blocking the task. These funtican be used to do polling (that is, to check
whether a mailbox is available, go off and do otlasks if it is not, and then return and try again)

There are also functions for which you pass imetiut value that blocks for a set amount of timdeavh
the function attempts to perform the specified apen. Additional information about the eCos RTOS
APIs can be found in the eCos Reference onlirfgtpt/ecos.sourceware.org/docs-latest

Switch Debouncing

When pressed or released, any mechanical input,asia switch or button, will bounce open
and closed briefly before settling. Processorsartast that they can detect this rapid
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succession of opens and closes; thus, it's hdadaw whether any individual read of a
switch's position is accurate. This is a case wtiergorocessor sees the trees but not the
forest. Debouncing is a technique used to smoadttheusamples and make sure the
processor doesn't get confused by the bouncing.

You can debounce inputs by inserting extra hardwassftware to filter out this noise.
Software debounce routines function more or lestebyng the input regularly at a
predetermined interval and making decisions ortigrat succession of reads that are the
same. Writing debounce code is straightforwardecelg the sampling interval and deciding
when the input has settled is more difficult, apddfic to each input device and application.

For additional information on sampling intervalster to the July 2002 Embedded System
Programming article "How to Choose A Sensible SamgpRate,” which can be found online
athttp://www.embedded.com

(72)

11.6. eCos Interrupt Handling

As explained irChapter 8it is important to keep interrupt processing ddw@a minimum so that other
(potentially higher-priority) interrupts in the $gs can be serviced, and so high-priority tasksraan
Thus, programmers typically divide interrupt handlinto two categories: a short ISR, and a more
leisurely DSR.

The question of how to make the split—what to puthie ISR and what to put in the DSR—depends on
the application and the processor. Basically, yoaugl defer whatever you can. OS functions thatnig
block cannot be called from an ISR or DSR. Andkelnany other operating systems, eCos in
particular does not allow an ISR even to signamaaphore via a nonblocking call. In eCos, semaphore
signaling must be done via a call from the DSR.

In order to get a better understanding of the gmigrrupt handling scheme, take a look at thefwihg
eCos example, which shows the use of an interaupandle the timing for the Blinking LED program.
In this example, a semaphore is used to signalkaftam the interrupt when it is time to toggle the
LED.

The initialization sequence between the hardwadesaftware in theyg_user_start function is
important. For example, you wouldn't want to @alkrinit  to start the timer interrupt before you
have created and installed an interrupt handletti@timer.

First, the LED is initialized. Next, the semaphageToggleSemaphore , which signals the
blinkLedTask ~ when it is time to toggle the LED, is initializebhen thevlinkLedTask is created as
shown previously.

Next, the ISR and DSR are created for the timerrapt with a call t@yg_interrupt_create , Which
fills in the kernel interrupt structure. The intgpt vector (27 for Timer 1) is defined by the macro
TIMERL_INT and passed in as the first parametegointerrupt_create . The next two parameters
are the interrupt priority and interrupt-privataalavhich are set to zero. The ISR functionerisr
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and DSR functionjmerDsr , are passed in next. When tlyg_interrupt_create function returns, it
sets the final two arguments: the interrupt hanaierinterruptHdl , and interrupt object,
timerinterruptObj . The interrupt handle is used in subsequent dpesafor this interrupt. The
interrupt object provides the kernel with an arememory containing the interrupt handler and its
associated data (in case any is necessary).

Next, the interrupt ISR and DSR are attached torttezrupt source by callingyg_interrupt_attach

and passing in the handle from the interrupt criatetion. As a precaution,

cyg_interrupt_acknowledge is called in case there is a pending timer infgtruastly, the interrupt is
unmasked by callingyg_interrupt_unmask

The final step in the initialization sequence istmfigure the timer registers and enable the rapgy
which is done in the functioimerinit

#include <cyg/kernel/kapi.h>
#include "timer.h"
#include "led.h"

/* Declare the ISR variables. */
cyg_handle_t timerinterruptHdl;
cyg_interrupt timerinterruptObj;
cyg_vector_t timerinterruptVector = TIMER1_INT;

cyg_sem_t ledToggleSemaphore;

/ *k%k *kk *k% *k% *k%k

*

* Function: cyg_user_start

*

* Description: Main routine for eCos interrupt Bli nking LED program.
* This function creates the LED toggl e semaphore, the

* LED task, and the timer interrupt h andler.

*

* Notes: This routine invokes the scheduler upon exit.

*

* Returns:  None.

*

khkkkkhkkkhkhkkkhkkkhhhkkhhkkhhhkkhhkkhhhkkhkhkxrhhx *k% ** xx/

void cyg_user_start(void)

{
[* Configure the green LED control pin. */
ledInit( );

[* Create the semaphore for the task signaling. This semaphore

* js initialized with a value of 0 so the togg ling task must wait
* for the first time period to elapse. */

cyg_semaphore_init(&ledToggleSemaphore, 0);

[* Create the LED task. */
cyg_thread_create(LED_TASK_PRIORITY,
blinkLedTask,
(cyg_addrword_t)0,
"LED Task",
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(void *)ledTaskStack,
LED_TASK_STACK_SIZE,
&ledTaskHdl,
&ledTaskObj);

/* Notify the scheduler to start running the ta sk. */
cyg_thread_resume(ledTaskHdl);

[* Initialize the interrupt for the timer. */
cyg_interrupt_create(timerinterruptVector,

0,

timerlsr,

timerDst,
&timerinterruptHdl,
&timerinterruptObj);

cyg_interrupt_attach(timerinterruptHdl);
cyg_interrupt_acknowledge(timerinterruptVector)
cyg_interrupt_unmask(timerinterruptVector);

[* Initialize the timer registers. */
timerlnit( );

eCos provides the functionality of saving and nestpthe processor's context when an interrupt igccu
so that the ISR does not need to perform theseatpes. Thus we reduce the workload of the timer
interrupt handlerimerlsr , to three critical operations that must be caraatlbefore interrupts are
enabled again.

The first operation masks the timer interrupt, vatball tocyg_interrupt_mask passing in the
interrupt vectotimerinterruptVector , until the DSR is run. This blocks the ISR fromrgecalled
again until the current interrupt has been proaksse

The second operation performed in the ISR is tmaakedge the interrupt. The interrupt must be
acknowledged in the processor's interrupt contraltel timer peripheral. The interrupt is acknowledig
in the interrupt controller using the eCos funcligg interrupt_acknowledge and passing in the
interrupt vectotimerinterruptVector . The interrupt is acknowledged in the timer peeigth by
writing theTIMER_1_MATCH0x02) bit to the timer status register.

The third operation, performed when returningpignform the operating system that the timer intptr
has been handled (with the macroG_ISR_HANDLEpand that the DSR needs to be run (with the macro
CYG_ISR_CALL_DsR. Notifying eCos that the interrupt has been hadgirevents it from calling any
other ISRs to handle the same interrupt.

The followingtimerisr ~ function shows these operations:

#include <cyg/hal/hal_intr.h>
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/ *k%k *k%k *kk *k% *k%k

*

* Function: timerlsr

*

* Description: Interrupt service routine for the t imer interrupt.
*
* Notes:
*
* Returns:  Bitmask to inform operating system that the
* interrupt has been handled and to s chedule the
* deferred service routine.
*
*k%k *kk *k% *k% mm/

uint32_t timerlsr(cyg_vector_t vector, cyg_addrword _tdata)
{

/* Block the timer interrupt from occurring unt il the DSR runs. */

cyg_interrupt_mask(timerinterruptVector);

/* Acknowledge the interrupt in the interrupt c ontroller and the
* timer peripheral. */

cyg_interrupt_acknowledge(timerinterruptVector) ;
TIMER_STATUS_REG = TIMER_1_MATCH;

/* Inform the operating system that the interru pt is handled by this
* ISR and that the DSR needs to run. */
return (CYG_ISR_HANDLED | CYG_ISR_CALL_DSR);

The DSR functiontimerDsr , which is shown next, is scheduled to be run byse@hce the ISR
completes. The DSR signals the LED task using ¢n@aphoreedToggleSemaphore  with the function
call cyg_semaphore_post

Next, the new timer interval is programmed into tinger match register, which is set to expire 530 m
from the current timer count. Finally, before exii the DSR unmasks the timer interrupt in the
operating system, by callingg_interrupt_unmask and passing in the interrupt vector, which
reenables the handling of incoming timer interrupts

/ *k%k *kk *k% *k% *k%k

*

* Function: timerDsr

*

* Description: Deferred service routine for the ti mer interrupt.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxhhhx *k% *k*k x/

void timerDsr(cyg_vector_t vector, cyg_ucount32 cou nt, cyg_addrword_t data)

{
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[* Signal the task to toggle the LED. */
cyg_semaphore_post(&ledToggleSemaphore);

[* Set the new timer interval. */
TIMER_1 _MATCH_REG = (TIMER_COUNT_REG + TIMER_IN TERVAL_500MS);

/* Enable processing of incoming timer interrup ts. */
cyg_interrupt_unmask(timerinterruptVector);

TheblinkLedTask  contains an infinite loop that waits for the selm@@ledToggle - Semaphore to be
signaled by callingyg_semaphore_wait . When the semaphore is signaled by the timer DisR{ask
callsledToggle to change the state of the LED.

/ *k%k *kk *k% *k% *k%k

* Function: blinkLedTask

*

* Description: This task handles toggling the LED when it is
* signaled from the timer interrupt h andler.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void blinkLedTask(cyg_addrword_t data)
while (1)

[* Wait for the signal that it is time to t oggle the LED. */
cyg_semaphore_wait(&ledToggleSemaphore);

/* Change the state of the green LED. */
ledToggle( );

This concludes our brief introduction to the eCpsrating system and its API. Hopefully, these few
examples have clarified some of the points madandisre in the book. These are valuable
programming techniques used frequently in embedgstéms.

Chapter 12. Embedded Linux Examples

Ty Webb: Don't be obsessed with your desires, Darmy Zen philosopher, Basho, once wrote: "A flute
with no holes is not a flute...and a doughnut withhole is a Danish.”" He was a funny guy.
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—the movie Caddyshack

I n this chapter, we will explore some examplesgg€mbedded Linux. The examples in this chapter are
similar to (or in some cases the same as) the eKasples we covered in the previous chapter. The
idea here is to get an introduction to embeddedy).end understand some basic operating system
functionality.

12.1. Introduction

The embedded Linux examples demonstrate certaio A&$s for various operations. Additional APIs

exist that offer other functionality. You shouldearch the additional APIs on your own to determine
whether there are other, better ways to perfornofiezations necessary for your particular embedded
system.

One aspect of Linux you need to be familiar wititsshread model. The Linux APl conforms to the
key POSIX standard in the space, POSIX 1003.1cyoomy called the pthreads standard. POSIX
leaves many of the implementation details up toojherating system implementer. A good source of
information on pthreads is the book Pthreads Progmnag, by Bradford Nichols, Dick Buttlar, and
Jacqueline Farrell (O'Reilly).

The version of embedded Linux used on the Arcomaa standard kernel tree (version 2.6) with
additional ARM and XScale support from the ARM LxnRroject athttp://www.arm.linux.org.uk

A plethora of books about Linux and embedded Liareavailable. Some good resources include
Understanding the Linux Kernel, by Daniel P. Boaetl Marco Cesati (O'Reilly), Linux Device
Drivers, by Alessandro Rubini and Jonathan Cor®&R¢illy), and Building Embedded Linux Systems,
by Karim Yaghmour (O'Reilly).

The instructions for configuring the embedded Lituxld environment and building the example Linux
applications are detailed Appendix E Additional information about using embedded Liranxthe
Arcom board can be found in the Arcom Embedded:tihechnical Manual and the VIPER-Lite
Technical Manual.

In order to keep the examples in this chapter shard easier to read, we don't
e check the return values from function calls. Inegpah it is a good idea to validale
" 4 all return codes. This provides feedback aboutmiiateproblems and allows you
as the developer, to make decisions in the softvased on failed calls.
Basically, it makes your code more robust and, hdlyeless buggy.

¥
-.
L
L

12.2. Accessing Hardware in Linux
Before proceeding with the Linux examples, it iportant to have a basic understanding of hardware

access in Linux. Linux, like most desktop operasggtems, partitions its memory management into
user space and kernel space.
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User space is where applications run (includingLihnex examples that follow). User space
applications are allowed to access the hardwanetbrdugh kernel-supported functions. Kernel sgace
typically where device drivers exist. This allovag tdevice drivers to have direct access to thewsarl

The Linux examples use a function caliedapin order to access a particular address rangemiiag
function asks the kernel to provide access to &iphlyaddress range contained in the hardware. For
details on how we usemayp refer to the book's source code.

12.3. Task Mechanics

For the first Linux example, we reuse the Blinklti§D program. This example shows how to create a
task to toggle the LED at a constant rate.

The tasklinkLedTask  delays for 500 ms and then toggles the green OHB.task uses an infinite
loop that calls the functiomsleep to suspend for the proper amount of time. ddieep function is
passed the number of microseconds to suspend, whihis case is 50,000 ms.

After the delay function call, theinkLedTask is blocked and put in the waiting state. The iagut
in the ready state once the time has elapsed andhtis been run by the scheduler. After the détay,
ledToggle function toggles the green LED.

#include <unistd.h>
#include "led.h"

/************************************************** *kk ** *%
*

* Function: blinkLedTask

*

* Description: This task handles toggling the gree nLED ata

* constant interval.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkhkkkhhhkkhhkkhhkhkkhhkkhhhkkhkhkxrhhx *k% ** xx/

void blinkLedTask(void *param)
while (1)

/* Delay for 500 milliseconds. */
usleep(50000);

ledToggle( );
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Themain function's job in this example is to create théLtiask. The task is created by calling the
functionpthread_create . For this example, the default task attributesusel, and no parameters are
passed to the tasknkLedTask

The functionpthread_join  is used to suspend thein function until thevlinkLedTask  task
terminates. In this case, thihkLedTask task runs forever, so neither function exits.

#include <pthread.h>

/* Declare the task variables. */
pthread_t ledTaskObj;

/************************************************** *kk ** *%
*

* Function: main

*

* Description: Main routine for Linux Blinking LED program. This

* function creates the LED task.

*

* Notes:

*

* Returns: 0.

*

*k%k *kk *k% *k% nnx/
int main(void)

{

/* Configure the green LED control pin. */
ledInit( );

[* Create the LED task using the default task a ttributes. Do not
* pass in any parameters to the task. */
pthread_create(&ledTaskObj, NULL, (void *)blink LedTask, NULL);

/* Allow the LED task to run. */
pthread_join(ledTaskObj, NULL);

return O;

Additional task operations are supported in Linlixese operations include terminating tasks,
modifying task attributes, yielding to other tagk¢he system, and suspending/resuming tasks.

12.4. Mutex Task Synchronization
In the Linux mutex example (just as in the eCoswpla), two tasks share a common variable called

gSharedvariable . One task increments the global variable at &nsetval, and the other task
decrements the variable at a set interval. The xnutetects the shared variable.
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The functionrmain starts by creating the muteskaredvariableMutex  , by calling the function
pthread_mutex_init . Because the default attributes are used in thexrareationNULL is passed in

as the second parameter. In Linux, mutexes hasbia#s that you can set using the second parameter
but we won't use them in this book, so we'll jussgNULL

Lastly, the two task&crementTask  anddecrementTask are created. It is important to create the
mutex before creating the tasks that use it, becatierwise the tasks could crash the program.

#include <pthread.h>

pthread_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0;

/ *k%k *kk *k% *k% *k%k

*

* Function: main

*

* Description: Main routine for the Linux mutex ex ample. This

* function creates the mutex and then the increment and
* decrement tasks.

*

* Notes:

*

* Returns: 0.

*

*kk *kk *kk *kk nnn/

int main(void)

[* Create the mutex for accessing the shared va riable using the
* default attributes. */
pthread_mutex_init(&sharedVariableMutex, NULL);

[* Create the increment and decrement tasks usi ng the default task

* attributes. Do not pass in any parameters to the tasks. */
pthread_create(&incrementTaskObj, NULL, (void * JincrementTask, NULL);
pthread_create(&decrementTaskObj, NULL, (void * )decrementTask, NULL);

/* Allow the tasks to run. */
pthread_join(incrementTaskObj, NULL);
pthread_join(decrementTaskObj, NULL);

return O;

The taskncrementTask , shown following, includes an infinite loop thaads by delaying for three
seconds by callingeep , which suspends the task for a specified numbseodnds.

Once the delay time elapses, the increment tasikmes from where it left off. The task then calls

pthread_mutex_lock  and passes in thearedVvariableMutex in order to take the mutex and access
the shared variable. If the mutex is availablés ibcked, and the increment task proceeds to imeng
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gSharedvariable . If the mutex is not available, the increment thkicks until it can acquire the
mutex.

After incrementing the shared variable and outpgtd message, the mutex is released with a call to
pthread_mutex_unlock . The mutex unlock function never blocks.

#include <stdio.h>
#include <unistd.h>

/************************************************** *k% *k*k

*

* Function: incrementTask

*

* Description: This task increments a shared varia ble.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk mm/

void incrementTask(void *param)

while (1)

{
/* Delay for 3 seconds. */
sleep(3);

/* Wait for the mutex before accessing the GPIO registers. */
pthread_mutex_lock(&sharedVariableMutex);

gSharedVariable++;

printf("Increment Task: shared variable val ue is %d\n",
gSharedVariable);

/* Release the mutex for other task to use. */

pthread_mutex_unlock(&sharedVariableMutex);

The taskdecrementTask is similar to the increment task. In its infinitep, the task first suspends for
seven seconds, then waits to acquirestaesdVvariableMutex . After taking the mutex, the task
decrements the value géharedvariable , outputs a message, and then releases the matsloan
here:

/ *k%k *kk *k% *k% *k%k

*

* Function: decrementTask

*

* Description: This task decrements a shared varia ble.

*
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* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk nnn/

void decrementTask(void *param)

while (1)
{

/* Delay for 7 seconds. */
sleep(7);

[* Wait for the mutex to become available. */
pthread_mutex_lock(&sharedVariableMutex);

gSharedVariable--;

printf("Decrement Task: shared variable val ue is %d\\n",
gSharedVariable);

/* Release the mutex. */
pthread_mutex_unlock(&sharedVariableMutex);

The Linux pthread API supports additional mutexchions that provide other functionality. For
example, the functiopthread_mutex_trylock can be used to attempt to get a mutex. If the xniste
available, the task acquires the mutex; if the migenot available, the task can proceed with otk
without waiting for the mutex to be freed up.

12.5. Semaphore Task Synchronization

The Linux semaphore example is similar to a pugtohdight switch, using an LED for the light, as
was the case in the eCos semaphore example. Tieetv@atasks in this example: a producer and a
consumer. The producer tagkgducerTask , monitors the button labeled SWO0 on the Arcom dsar
add-on moduleEigure 11-1in Chapter 1lshows the button used in this example.

When the SWO button is pressed, the producer tgakls the consumer task using a semaphore. The

consumergonsumerTask , waits for the semaphore signal from the prodtask; once received, the
consumer task outputs a message and toggles the QED.

Themain function first initializes the LED by callingdinit . Next, the semaphore is initialized with a
call tosem_init . The initial value of the semaphosemButton , is set to zero by the last parameter so

that the consumer task that is waiting does notw@eeuntil the semaphore is signaled by the praduce
task. The second parameter notifies the operayisigs that this semaphore may be used by this
process only. Lastly, the two tasks are createdaaméssage is output signifying the start of the
program.
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#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include "led.h"

sem_t semButton;

/************************************************** *k% *k*k *

*

* Function: main

*

* Description: Main routine for the Linux semaphor e example. This

* function creates the semaphore and then the increment
* and decrement tasks.

*

* Notes:

*

* Returns: 0.

*

*k%k *kk *k% *k% xxn/
int main(void)
{
[* Configure the green LED control pin. */
ledInit( );

[* Create the semaphore for this process only a nd with an initial
* value of zero. */
sem_init(&semButton, 0, 0);

[* Create the producer and consumer tasks using the default task

* attributes. Do not pass in any parameters to the tasks. */
pthread_create(&producerTaskObj, NULL, (void *) producerTask, NULL);
pthread_create(&consumerTaskObj, NULL, (void *) consumerTask, NULL);
printf("Linux semaphore example - press button SWO0.\n");

* Allow the tasks to run. */
pthread_join(producerTaskObj, NULL);
pthread_join(consumerTaskObj, NULL);

return O;

TheproducerTask  function shown next contains an infinite loop thit delays for 10 ms and then
checks to see whether the SWO button has beeregrdsgcalling the functiobuttonDebounce . For

additional information about selecting samplingemtls and button debouncing, read the sidebar
"Switch Debouncingin Chapter 11

When the SWO button is pressed, ph@lucerTask  function signals theemButton semaphore by
callingsem_post . This increments the semaphore value and wakesti®imer task. The producer task
then returns to monitoring the SWO button.
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#include <unistd.h>
#include "button.h"

/ *k%k *kk *k% *k% *k%k

*

* Function: producerTask

*

* Description: This task monitors button SWO0. Once pressed, the button
* is debounced and the semaphore is s ignaled, waking the
* waiting consumer task.

*

* Notes:

*

* Returns:  None.

*

*kk *kk *kk *kk mm/

void producerTask(void *param)

{
int buttonOn;

while (1)
{

/* Delay for 10 milliseconds. */
usleep(10000);

/* Check whether the SWO button has been pr essed. */
buttonOn = buttonDebounce( );

/* If button SWO was pressed, signal the co nsumer task. */
if (buttonOn)
sem_post(&semButton);

The followingconsumerTask function contains an infinite loop that waits tbe semaphore to be
signaled by callingem_wait . The wait function blocks the task if the valueloé semaphore is 0.

Once the semaphore signal is received, the consiasleputputs a message and toggles the green LED
by callingledToggle . After toggling the LED, the consumer task retuimsvaiting for another
semaphore signal.

/ *k%k *kk *k% *k% *k%k

*

* Function: consumerTask

*

* Description: This task waits for the semaphore s ignal from the

* producer task. Once the signal is r eceived, the task
* outputs a message and toggles the g reen LED.

*

* Notes:

*

* Returns:  None.
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*

*kk *kk *kk *kk nnn/

void consumerTask(void *param)
while (1)

[* Wait for the signal. */
sem_wait(&semButton);

printf("Button SWO0 was pressed.\\n");

ledToggle( );

12.6. Message Passing

The Linux message passing example is a light swashs the eCos example, with a producer and a
consumer task. The producer task monitors buttof.SWice the button is pressed, the producer sends
the button press count to the consumer task. Theuroer task waits for this message, outputs the
button count, and then toggles the green LED. &€k&nple uses a POSIX message queue for passing
the message from the producer to the consumer task.

The source code for the message queue exampléeiischaled on the book's wep
site because it does not work on the Arcom boashgped. In order to get the
J:° message queue code running on the Arcom boardljribz kernel needs to be
rebuilt with message queue support included.

Themain routine demonstrates how to create the message gtst, the LED is initialized by calling
ledinit . Then the message queue is created by caflgngpen. The first parameter specifies the name
of the queue asessage queue . The second parameter, which is the OR of thestdéus flags and
access modes, specifies the following:

O_CREAT

Create the message queue if it does not exist.

O_EXCL

Used witho_CREATto create and open a message queue if a quebe sfte name does not
already exist. If a queue does exist with the saame, the message queue is not opened.
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O_RDWR
Open for read and write access.

After the message queue is created successfullyatiks are created as shown previously. The
techniques we've just discussed are shown in fleviog main function:

#include <pthread.h>
#include <mqueue.h>
#include "led.h"

int8_t messageQueuePath[] = "message queue”;

/ *k%k *kk *k% *k% *k%k

*

* Function: main

*

* Description: Main routine for the Linux message gueue program. This
* function creates the message queue and the producer

* and consumer tasks.

*

* Notes:

*

* Returns: 0.

*

khkkkkhkkkhhkkkhkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxhhhx *k% *k*k x/

int main(void)
mqd_t messageQueueDescr;

[* Configure the green LED control pin. */

ledInit( );

/* Create the message queue for sending informa tion between tasks. */
messageQueueDescr = mg_open(messageQueuePath, ( O_CREAT | O_EXCL | O_RDWR));
[* Create the producer task using the default t ask attributes. Do not

* pass in any parameters to the task. */

pthread_create(&producerTaskObj, NULL, (void *) producerTask, NULL);

[* Create the consumer task using the default t ask attributes. Do not

* pass in any parameters to the task. */

pthread_create(&consumerTaskObj, NULL, (void *) consumerTask, NULL);

* Allow the tasks to run. */
pthread_join(producerTaskObj, NULL);
pthread_join(consumerTaskObj, NULL);

return O;
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Prior to entering its infinite loop, theoducerTask  starts by initializing the variable that keepskraf

the number of button pressesitonPressCount , to zero. Then the producer task opens the message
gueue, whose name is specifiedn®gsageQueuePath , which was created in theain function. The
gueue is opened with write-only permission, spedifdy the second parameter flagvRONLYoecause

the producer sends only messages. Because the flE@mNBLOCIKS not specified in the second parameter
to mg_open, if a message cannot be inserted into the qubagroducer task blocks. The function
mg_open returns a message queue descriptor that is usadsequent accesses to the message queue.

In the infinite loop, the producer task first deddgr 10 ms by callingsleep . The delay interval
selected ensures the task is responsive to butémsgs. Next, the functidattonDebounce is called to
determine if the SWO button has been pressed.

Each time the SWO button is pressadionPressCount  is incremented and the value is sent to the
waiting consumer task, using the message queuacdammodate the message queue send function, the
unionmsgbuf_t is used to contain the message. This union censist 32-bit count and a 4-byte buffer
array. The message is sent using the functi@rsend, with the message queue descriptor,
messageQueueDescr , in the first parameter, the button press coutihénsecond parameter, the size of

the message in the third parameter, and the priofithe message in the last parameter.

Unlike the eCos message queue implementation, gessader Linux have a priority (which is
specified in the last parameter passedldosend). You can use this parameter to insert higherrpyio
messages at the front of the message queue, &abdy the receiving task.

After the message is successfully sent, the lotyns to calling the delay function. Here is the
producerTask function:

#include <unistd.h>
#include "button.h"

typedef union
uint32_t count;

uint8_t buf[4];
} msgbuf_t;

/ *k%k *kk *k% *k% *k%k

*

* Function: producerTask

*

* Description: This task monitors button SWO0. Once pressed, the button
* is debounced and a message is sent to the waiting

* consumer task.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkkhhkkhhhkkhhkkhkhhkkhkhhxhhhx *k% * xx/
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void producerTask(void *param)

{

uint32_t buttonPressCount = 0;
mqd_t messageQueueDescr;
uint8_t button;

msgbuf_t msg;

/* Open the existing message queue using the wr ite-only flag because
* this task only sends messages. Set the queue to block if

* a send cannot take place immediately. */

messageQueueDescr = mg_open(messageQueuePath, O _WRONLY);

while (1)
{

/* Delay for 10 milliseconds. */
usleep(10000);

/* Check whether the SWO0 button has been pr essed. */
button = buttonDebounce( );

[* If button SWO0 was pressed, send a messag e to the consumer task. */
if (button & BUTTON_SWO0)

{

buttonPressCount++;
msg.count = buttonPressCount;

mqg_send(messageQueueDescr, &msg.buf{0], sizeof(buttonPressCount), 0);

}
}
}

The taskconsumerTask in the following function begins like the produdask by opening the message
gueue with a call teng_open. But the queue is opened with read-only permisbipthe second

parameter flagd_RDONLYbecause the consumer task receives only messgiges.the flag
O_NONBLOCIsn't specified in the second parametangoopen, if no message is available in the queue
when the consumer calls the message queue receigiadn, it blocks until a message is present. The
functionmg_open returns a message queue descriptor used in sudrgeapcesses to the message queue.

The consumer task then enters an infinite loop w/iteraits for a message by callimg_receive
Once a message is available, it is copletby Linux) into thecvMsg variable. TheonsumerTask then
outputs the message and toggles the green LEDtaSkehen returns to waiting for the next message.

[T There may be an implementation of the messageequetine that does not use a copy.

#include <stdio.h>

/************************************************** *k% * *%

*

* Function: consumerTask

*
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* Description: This task waits for a message from the producer task.
* Once the message is received via th € message queue,
* the task outputs a message.

*

* Notes:

*

* Returns:  None.

*

khkkkkkkkkhhkkkkkkkhhhkkhhkkhhhkkhhkkhhhkkhhkxhhhx *k% * xx/

void consumerTask(void *param)

{

mqd_t messageQueueDescr;
msgbuf_t rcvMsg;

/* Open the existing message queue using the re ad-only flag because

* this task only receives messages. Set the qu eue to block if

* a message is not available. */

messageQueueDescr = mg_open(messageQueuePath, O _RDONLY);

while (1)

{
/* Wait for a new message. */
mg_receive(messageQueueDescr, &rcvMsg.buf[0 ], 4, NULL);
printf("Button SWO0 pressed %d times.\\n", r cvMsg.count);
ledToggle( );

Linux includes numerous other API functions thdeoadditional functionality for the mechanisms
covered previously, as well as other types of sgamuaation mechanisms. Other mechanisms include
condition variables and reader-writer locks. Canditvariables allow multiple tasks to wait until a
specific event occurs or until the variable reachspecific value. Reader-writer locks allow muéip
tasks to read data concurrently, whereas any tasikgvdata has exclusive access.

Interrupt handling in Linux is more complex thaattfound in RTOSes. For this reason, we have
omitted an interrupt example using Linux. For adratinderstanding of Linux interrupt handling, take
look at Linux Device Drivers, by Alessandro Rulanid Jonathan Corbe t (O'Reilly).

Chapter 13. Extending Functionality

Kramer: It's just a write-off for them.Jerry: How it a write-off?Kramer: They just write it off.Jgr
Write it off what?Kramer: Jerry, all these big coampes, they write-off everything.Jerry: You donéme
know what a write-off is.Kramer: Do you?Jerry: Nalon't.Kramer: But they do and they are the ones
writing it off.
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—the television series "Seinfeld," episode "Thekage"

In this chapter, we introduce additional hardware software technologies that you may encounter in
embedded systems. We begin with a look at a paihigfinterconnection buses callég land SPI.

Next we introduce programmable logic, including FR3GANd finally, we take a look at adding a
TCP/IP network.

13.1. Common Peripherals

As you work on more and more embedded systemswitboome across different peripherals that you
will have to use. In this section, we take a lobk@ne of the common embedded peripherals that you
will likely encounter. Sometimes it is necessarynmiplement these protocols entirely in software(se
the sidebal'Serial Bit Banging later in this chapter).

Serial buses can be either asynchronous or synahsoin an asynchronous serial connection, the data
is sent without using a common timing clock sigia.align the receiver with the sender, there meo
sort of start condition to signify when the transsnon begins, and a stop condition to indicatestiteof
transmission. A synchronous serial connection glpiaises a separate clock signal to synchronize th
receiver with the sender. Synchronous connectiamgatso use a start and stop condition to
synchronize the receiver and sender, after whietséimder must send characters one right after the
other.

A serial interface that can send and receive dataessame time is called full-duplex. A seriakiriace
that must alternate between sending and receiatayid called half-duplex.

13.1.1. Inter-Integrated Circuit Bus

One of the common serial buses used in embeddéshsyss the Inter-Integrated Circuit bus,
commonly referred to as thé C (pronounced "eye squared see") bus. This besnisnon in embedded
systems because it doesn't require much in theofvagirdware resources and is ideal for low-speed,
short-distance communications. TRE bus, created by Philips, is a two-wire (data elndk)
communication system?C includes the addressing of individual devicestup27 in Standard-mode,
1024 in extended mode) to allow multiple devicesh@nsame bus.

Various maximum data rates are supported by diffexvisions to the’C specification. These data
rates are up to 100 Kbps for Standard-mode, 40 KdopFast-mode, and 3.4 Mbps for High-speed
mode. Devices of different data rates can be morethe same bus. Th& specification can be found
online athttp://www.semiconductors.philips.com

The PXA255 processor includes &8 bus interface unit. Additional information abahis can be
found in the PXA255 Processor Developer's Manual.

Some devices that typically contafiClbus interfaces are EEPROMSs and real-time clogschigure
13-1shows an exampléQ@ bus with multiple devices.

Figure 13-1. Example | C bus structure
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SDA (data)

Microprocessor

SCL (clock)

[T 1

Peripheral Peripheral
Device 2 Device n

Peripheral
Device 1

The two FC bus signals are serial data (SDA) and seriaka{8E€L). The master on the bus initiates all
transfers; other devices on the bus are calle@sldaFigure 13-1 the microprocessor is the master and
the other devices are the slaves. Both masterlamdsscan receive and transmit data on the bus.

The master initiates transactions on the bus anttas the clock signal. Because of this, a slasvdak
needs a way of holding off the master during asaation. When a slave holds off the master dewice t
perform flow control on the incoming data, it idled clock stretching. During this time the slavaeks
the clock line pulled low until it is ready to camie with the transaction. It is important thatrakster
devices support this featuéigure 13-2is the format of ar’C bus transaction. All data on the bus is
communicated most significant bit first (MSB).

Figure 13-2. Format of a transaction on an | C bus
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2(3|8|818|8|8
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=L |=C |=C | =€ |=C |=C | =C

An I°C bus data transaction begins by the master iinigjat start condition. A start condition occurs
when the master causes a high-to-low transitiotherdata line while the clock line is held high.

Next, the 7-bit unique address of the device i$ sahby the master device. Each device on the bus
checks this address with its own to determine wdrettie master is communicating with fClslave
devices come with a predefined device addresslover bits of this address are sometimes
configurable in hardware.

Then the master outputs the read or write bitiéfhit is high, the transaction is a read, wheta daes

from the slave to the master device. If the bibwg, the transaction is a write from the masteth®
slave device.
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The slave device then sends an acknowledge bitheacknowledge bit, the data line is kept lowle/hi

the clock signal is high. Acknowledge bits alwayes sent by the slave device.

Now, depending on the type of transaction (readrde), the transmitter (which can be slave or regst
begins sending a byte of data, starting with théB\M& the end of the data byte, the receiver (eithe
slave or master) issues an acknowledge bit. Thtsnpais continued until all of the data has been

transferred.

The transaction ends with the master device caussigp condition. A stop condition occurs when the
master causes a low-to-high transition on the aavhile holding the clock line high. Note thaet

I2C protocol supports multiple masters.

Serial Bit Banging

Some embedded systems don't have hardware dediogtedorming all of the interface
functions of a serial interface. In this case, galhpurpose 1/O signals are connected to
external devices, and it is up to the softwarartplement the communication protocol. Bit
banging is a slang term for the process of trarnisfgserial data under software control.

Bit banging can be used for any serial interfageluiding FC, SPI, and even UARTSs. Wher
implementing a serial interface via bit banging foftware controls all of the signals to
operate the interface. For example, the followungction,serialSendData , demonstrates
sending a byte of dataataByte , on a serial interface.

The function starts off with th@tMask set to the most significant bit. Thie statement
determines whether the bit is high or low and He#3GPIO data signal accordingly. For ea
bit that is transmitted on the serial interface, @PI1O clock signal is toggled. Thaile loop
continues until all eight bits of the data byte &deen sent.

void serialSendData(uint8_t dataByte)

{
uint8_t bitMask;

/* Loop through each bit in the byte of data. * /
for (bitMask = 0x80; bitMask != 0x00; bitMask > >=1)
{
/* See if the next data bit is high or low
* and set the GPIO data line accordingly. */
if (dataByte & bitMask)
gpioDataSignal = 1,
else
gpioDataSignal = 0;

/* Toggle the clock GPIO line. */
gpioClkSignal = 1;

/* Delay for the proper amount of time. */

gpioClkSignal = 0;
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13.1.2. Serial Peripheral Interface

Another serial bus that is commonly used in embddystems is the Motorola serial peripheral
interface (SPI, pronounced "spy"). Another simdarial interface is Microwire, trademarked by
National Semiconductor, which is a restricted subs&PI.

SPI can operate at data rates up to 1 Mbps. ladditionally operate in full-duplex mode, making it
better suited tharfC for applications where data is constantly flowif§ uses fewer signals than SPI,
can communicate over several feet (a meter or mang) has a well defined specification. SPI, on the
other hand, has a limited communication length fgvainches. SPI does not support multiple masters
or specify a device addressing scheme; therefdditianal hardware signals are needed in order to
select specific slaves. This lack of addressinglbemaa benefit because it reduces the overheadgtesi
master, single-slave SPI interfaces.

Figure 13-3shows an example of an SPI bus structure. Irfithise, there is a single master and two
slave devices connected to the SPI bus.

Figure 13-3. Example SPI bus structure
o—>» | S(LK
L 4 | MOSI
L MISO
>SS

Slave 1

The SPI bus includes 3 + N signals, where N isitiaber of slaves on the bus.Higure 13-3there
are two slaves, so the SPI bus requires five ssgfidflese signals are serial clock (SCLK), dataadign
Master Out Slave In (MOSI), data signal Master lew8 Out (MISO), and Slave Select (SS1 and SS2).
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The slave select signal is used to select whickestae master wants to communicate with. In this
example, because there are two slave devices,l&we select signals are needed. This shows how
additional hardware resources are needed in then&Place to accommodate the lack of addressing in
the protocol.

SPI operates in full-duplex mode. During commun@#, the master device initiates a transaction by
generating a clock and selecting a device usinglthes select signal. Data is then transferredth b
directions on the MOSI and MISO lines. Because gatansferred in both directions, it is up toteac
device to know whether the incoming data is medunlrgthat is, whether the transaction was a read,
write, or both.

Another difference between SPI afi@ is that SPI does not include any type of ackndgieent
mechanism. The transmitter has no way of knowirtg tlas been received at the destination. There is
also no mechanism for flow control included in SPilow control is needed, it must be implemented
outside of SPI.

13.1.3. Programmable Logic

Programmable logic chips are widely used in embedystems. These devices allow hardware
engineers to perform various tasks (such as cigetsegic) in hardware. As a programmer, you might
not design the logic within the programmable devize you may need to write a driver to download
the program into an FPGA.

This section will give you a better basis for conmieating with hardware designers to determine which
functions should be implemented in dedicated Iggiogrammable logic, and/or software. We've found
that there are valid reasons for choosing eacheset three implementation techniques. You must pay

close attention to the requirements of the pawicapplication to make the correct decision.

Many types of programmable logic are available. Gilneent range of offerings includes everything
from small devices capable of implementing onlyaadful of logic equations to huge devices that can
hold an entire processor core (plus peripherdisaddition to this incredible difference in size,
architectures also vary greatly. We'll introduce yo the most common types of programmable logic
and highlight the most important features of eggie t

13.1.3.1. Programmable Logic Device

At the low end of the spectrum is the original Remgmable Logic Device (PLD). PLDs were the first
chips that could be used to implement a flexibgtdi logic design in hardware. In the early days)
could remove a couple of the 7400-series Transiktansistor-Logic (TTL) parts (ANDs, ORs, and
NOTSs) from your board and replace them with a €rRJLD. Other names you might encounter for this
class of device are Programmable Logic Array (PlEADgrammable Array Logic (PAL), and Generic
Array Logic (GAL).

PLDs are often used for address decoding, whegehitree several clear advantages over the 7400-
series TTL parts that they replaced. Firstly, olnig typically requires less board area and wiring.
Another advantage is that the design inside the ishiiexible, so a change in the logic doesn'tinex
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any rewiring of the board. Rather, the decodingcdagn be altered by simply replacing the single,
previously installed PLD with another part that baen programmed with the new Boolean logic.

Inside each PLD is a set of connectegicrocells These macrocells are typically comprised of some
amount of combinatorial logic (AND and OR gates,dgample) and a flip-flop. In other words, a small
Boolean logic equation can be built within each roeell. This equation combines the state of some
number of binary inputs into a binary output afideicessary, stores that output in the flip-flogiluhe
next clock edge. Of course, the particulars ofailable logic gates and flip-flops are specifieach
manufacturer and product family. But the generahits always the same.

Hardware designs for these simple PLDs are gegexaiiten in languages such as ABEL or PALASM
(the hardware equivalents of assembly languagdjawn with the help of a schematic capture tool.

13.1.3.2. Complex Programmable Logic Device

As chip densities increased, it was natural forRh® manufacturers to evolve their products intgéa
parts (logically, but not necessarily physicallg)led Complex Programmable Logic Devices (CPLDs).
For most practical purposes, CPLDs can be thougis onultiple PLDs (plus some programmable
interconnect) in a single chip. The larger capacftg CPLD allows you to implement either more togi
equations or a more complicated design. In faetsélthips are large enough to replace dozens ¢ tho
pesky 7400-series parts.

Figure 13-4contains a block diagram of a hypothetical CPLBclEof the four logic blocks shown is
equivalent to one PLD. However, in an actual CPh&¢ may be more (or fewer) than four logic
blocks.Figure 13-6is a simplified version. The switch matrix allogignal routing and communication
between the logic blocks. Note also that theseclblicks are themselves comprised of macrocells and
interconnect wiring, just like an ordinary PLD.

Figure 13-4. CPLD internal structure

—— Logic logic |+——
——  block block |4——
Switch
matrix
——t Logic logic |+——
—— block block |4——
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Because CPLDs can hold larger designs than PLEB,gbtential uses are more varied. They are still
sometimes used for simple applications such asaddtecoding, but more often contain high-
performance control logic or finite state machin&isthe high end (in terms of numbers of gates)reh
is also a lot of overlap in potential applicationsh FPGAs. Because of its less flexible internal
architecture, the delay through a CPLD (measurethitoseconds) is more predictable and usually
shorter.

13.1.3.3. Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) can be usethplement just about any hardware design.
One use is to prototype a lump of hardware thdteviéntually find its way into an ASIC. However,
there is nothing to say that the FPGA can't rermathe final product, and it quite often does. Wiast

it does will depend on the relative weights of tleeelopment cost and production cost for a pasicul
project, as well as the need to upgrade the haeddesign after the product ships. (It costs sigaiftly
more to develop an ASIC, but the cost per chip bellower if you produce them in sufficient
guantities. The cost tradeoff involves the expeatahber of chips to be produced and the expected
likelihood of hardware bugs and/or changes. Thikewdor a rather complicated cost analysis.)

The historical development of the technology ilrFRGA was distinct from the PLD/CPLD evolution
just described. This is apparent when you lookaitstructures insid€igure 13-5Sllustrates a typical
FPGA architecture. There are three key parts tstitgture: logic blocks, interconnect, and 1/0di&
The I/0 blocks form a ring around the outer edgthefpart. Each of these provides individually
selectable input, output, or bi-directional acdessne of the GPIO pins on the exterior of the FPGA
package. Inside the ring of I/O blocks lies a regtdar array of logic blocks. And finally, conneti
logic blocks to logic blocks and I/O blocks to lodilocks, the programmable interconnect wiring runs
through the array.

Figure 13-5. FPGA internal structure
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The logic blocks within an FPGA can be as small sintple as the macrocells in a PLD (a so-called
fine-grained architecture) or larger and more caxa coarse-grained architecture). However, the
logic blocks in an FPGA are never as large as #redPLD, as are the logic blocks of a CPLD.
Remember that the logic blocks of a CPLD contaiitiple macrocells. But the logic blocks in an
FPGA are generally nothing more than a couple gitlgates or a look-up table and a flip-flop.

Because of all the extra flip-flops, the architeetaf an FPGA is much more flexible than that of a
CPLD. This makes FPGAs better in register-heavympédlined applications. They are also often used
in place of a processor-plus-software solutiontipalarly where the processing of input data stream
must be performed at a very fast pace. In addit®GAs are usually denser (more gates in a given
area) than their CPLD cousins, so they are thed® tthoice for larger logic designs.

13.1.4. Pulse Width Modulation
Pulse width modulation (PWM) is a powerful techradar controlling analog circuits with a processor'

digital outputs. PWM is employed in a wide variefyapplications, ranging from measurement and
communications to power control and conversion.

13.1.4.1. Analog circuits
An analog signal has a continuously varying vali# effectively infinite resolution in both timend
magnitude. A 9 V battery is an example of an andegce, in that its output voltage is not pregisel

V, but changes over time and can take any reakviaim 0.0 V to about 9.5 V. Similarly, the amount
of current drawn from a battery is not limited térate set of possible values. Analog signals are
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distinguishable from digital signals because thietalways take values only from a finite set of
predetermined possibilities, such as the set ofuaoes (0 V, 5 V).

Analog voltages and currents can be used to cothirays directly, such as the volume of a car ralio
a simple analog radio, a knob is connected to @biarresistor. As you turn the knob, the resistanc
goes up or down. As that happens, the current figwhrough the resistor increases or decreases. Thi
might directly change the amount of voltage drivihg speakers, thus increasing or decreasing the
volume.

As intuitive and simple as analog control may seiem,not always economically attractive or
otherwise practical. For one thing, analog circtetsd to drift over time and can, therefore, beyver
difficult to tune. Precision analog circuits, whisblve that problem, can be very large, heavy sk
of old home stereo equipment), and expensive. Analeuits can also get very hot; the power
dissipated is proportional to the voltage acrossatttive elements multiplied by the current through
them. Analog circuitry can also be sensitive tasaoBecause of its infinite resolution, any peratidn
or noise on an analog signal necessarily changesutient value.

13.1.4.2. Digital control

Controlling analog circuits digitally can drastigaleduce system costs and power consumption. ¥/hat'
more, many microcontrollers and DSPs already irelua-chip PWM controllers, making
implementation easy.

In a nutshell, PWM is a way of digitally encodingadog signal levels. Through the use of high-
resolution counters, the duty cycle (the percentddene that a signal is asserted) of a squaresvigv
modulated to encode a specific analog signal |&us. PWM signal is still digital because, at anyegi
instant, the full DC supply is either fully on ailiy off. The voltage or current source is suppliedhe
analog load by means of a repeating series of drofirpulses. Then-timeis the time during which the
DC supply is applied to the load, and tfetimeis the period during which that supply is switcluéfl
Given a sufficiently small period of the PWM signahy analog value can be encoded with PWM.

To help explain the relation between digital enogdand analog values, we show three different PWM
signals inFigure 13-6Figure 13-6a) shows a PWM output at a 10 percent duty cyidiat is, the

signal is on for 10 percent of the period and offthe other 90 percent. Figures 13-6(b) and 13-6(c
show PWM outputs at 50 percent and 90 percentches, respectively. These three PWM outputs
encode three different analog signal values, giekfent, 50 percent, and 90 percent of the fudingfih.

If, for example, the supply is 9 V and the dutyleyis 10 percent, a 0.9 V analog signal results.

Figure 13-6. PWM signals with varying duty cycles
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In Figure 13-7we show a simple circuit that could be drivemgdPWM. In this figure, a 9 V battery
powers an incandescent lightbulb. If the switchreanting the battery and lamp is closed for 50 s, t
bulb receives the full 9 V during that intervalwé then open the switch for the next 50 ms, the bu
receives 0 V. If we repeat this cycle 10 times@oad, the bulb will be lit as though it were conegicto
a 4.5V battery (50 percent of 9 V). We say thatdbty cycle is 50 percent and the modulating
frequency is 10 Hz. (Note that we're not advocagiog actually power a lightbulb this way; we just
think this an easy-to-understand example.)

Figure 13-7. A simple PWM circuit

- 1

® ©
Switch Lamp

Battery (9 volt)
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Most loads require a much higher modulating fregye¢han 10 Hz. Imagine that our lamp was
switched on for five seconds, then off for five @eds, then on again. The duty cycle would stilbbe
percent, but the bulb would appear brightly lit fioe first five seconds and not lit at all for thext. In
order for the bulb to see a voltage of 4.5 V, thele period must be short relative to the loadspoase
time to a change in the switch state. To achiegadtsired effect of a dimmer (but always lit) lantps
necessary to increase the modulating frequencys@ie is true in other applications of PWM.
Common modulating frequencies range from 1 to 200. k

One of the advantages of PWM is that the signabmesndigital all the way from the processor to the
controlled system; no digital-to-analog conversmnecessary. Keeping the signal digital minimizes
noise effects. Noise can affect a digital signdy @ginthe noise is strong enough to change a lddida a
logical O, or vice versa.

This increased noise immunity is another benefiéhafosing PWM over analog control and is the
principal reason PWM is sometimes used for comnatiwos. Switching from an analog signal to

PWM can increase the length of a communicationaméladramatically. At the receiving end, a suitable
resistor-capacitor (RC) or inductor-capacitor (l@jwork can remove the modulating high-frequency
square wave and return the signal to analog form.

PWM finds application in a variety of systems. Asoacrete example, consider a PWM-controlled
brake. To put it simply, a brake is a device thatps down hard on something. In many brakes, the
amount of clamping pressure (or stopping powecpigrolled with an analog input signal. The more
voltage or current that's applied to the brake ntioge pressure the brake will exert.

The output of a PWM controller could be connected switch between the supply and the brake. To
produce more stopping power, the software needianhgase the duty cycle of the PWM output. If a
specific amount of braking pressure is desired,sm@anents would need to be taken to determine the
mathematical relationship between duty cycle amdgure. (And the resulting formulae or lookup table
would be tweaked for operating temperature, sunfeea, and so on.)

To set the pressure on the brake to, say, 10@hasgoftware would do a reverse lookup to determine
the duty cycle that should produce that amounbafd. It would then set the PWM duty cycle to the
new value and the brake would respond accorditigdysensor is available in the system, the dutjecy
can be tweaked, under closed-loop control, undildésired pressure is precisely achieved.

13.2. Networking for All Devices Great and Small

Incorporating networking support in an embeddedademight seem like a daunting task at first glance
However, even an older embedded system can beagpddth a software network stack to extend its
feature set and incorporate modern conveniencésagiemailing an administrator when alarms occur,
and a web server to provide a remote user intedacessible from any web browser.

Certainly, there are costs to including a netwadakls. The network interface (such as Ethernet) can
quickly become expensive and complicated. You nmesdrextra hardware (with additional costs for
chips and connectors, board space, and power cqiisimnand software (with new drivers). However,
this does not have to be the case. You could simple Serial Line Interface Protocol (SLIP) or foi
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to Point Protocol (PPP) over a UART port for thénerk interface. Most embedded processors include
at least one UART, and SLIP and PPP are very Ipastocols to implement—no more difficult than the
Monitor and Control program we looked atGhapter 9

The demands of a network stack may cause you toywlwat too many system resources are required.
The processing power and memory needed to accontenndavork support can be greatly reduced by
choosing the proper network stack. Several softwmateork stacks that are targeted at embedded
systems, where processor cycles and memory aredijare currently available in the open source
community.

The next section is intended to give you an ovenoésome of the benefits of adding networking
support and includes some options of resource-caumsaetworking stacks that are ideal for
incorporation into embedded systems.

13.2.1. Benefits of Network Support

Adding networking support, Transmission ControltBeol/Internet Protocol (TCP/IP) and the other
supporting protocols grouped in this suite enatdadardized access to a device. TCP/IP enables a
device to communicate using the native protocehost networking infrastructures, which allows the
device to be accessed from a PC, PDA, or web-edaeléular phone. The network-enabled device can
communicate over a Local Area Network (LAN) or thgh the global Internet.

For additional information about networking prottscdake a look at the three-volume series TCP/IP
lllustrated, by Richard Stevens (Addison-Wesley)oter resource is TCP/IP Guide: A
Comprehensive, lllustrated Internet Protocols Refee, by Charles Kozierok (No Starch Press).

Each device can be tailored to use the ideal pobtodransmit information over the network. Theywe
low-overhead User Datagram Protocol (UDP) can led @isr data not requiring acknowledgment,
whereas TCP is available for data that needs eoatfion of its receipt from the destination.

Networking support can improve the basic featutelsd an embedded device is capable of supporting.
For example, if an alarm condition occurs in theteg, the device can generate an email and seffd it
to notify the network operator of the error. Théwamrk operator can then quickly perform the necessa
maintenance to correct the problem and get thesyback to normal—keeping the system downtime
to a minimum.

Another benefit of networking is thateb-based managemeasan be easily incorporated into the device.
Web-based management allows configuration and @ooitia system using TCP/IP protocols and a web
browser. A technician can connect directly to aice¥or configuration and monitoring using a stamgida
PDA equipped with a standard web browser. The é&viweb server and HyperText Markup Language
(HTML) pages are the new user interface for thaaewWany devices today, such as cable modem
routers and firewalls, include a web interfacedonfiguration.Figure 13-8hows the interface to a
network of sensor devices presented by a web st#raeenables web-based management.

Figure 13-8. Example of web-based management witheswork stack
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Advantages of Web-based Management

Web-based management uses TCP to send packets tasetwork, which provides a
reliable method for transferring data using an agkedgment and retransmission scheme.

Web-based management relies on a standard browrgdefclient-side interface. This give:
users a standard interface that they are familidr and comfortable using. A web-enabled
device contains a server that simply sends thepagles to the user when the device is

accessed. The browser handles the task of rendderighages and presenting the graphical
images to the user.

v/

The Simple Network Management Protocol (SNMP) heenlthe standard for monitoring
and controlling networked devices. Integrating avoek stack allows web-based
management to be utilized. SNMP can be implemennettie smallest embedded systems
however, it has several shortcomings.

One deficiency of SNMP is that it uses UDP for titamsmission of packets across a network.
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UDP is a connectionless, unreliable protocol arelifamechanism for the retransmission |of
packets that are lost. There can be disastrougqaeaces if crucial information about the
health of the system is lost and the sender hagaywf knowing it was not received. SNMP
also often requires the use of costly and comp&waork management software on the client
side.

13.2.2. Networking Solutions for Embedded Systems

There are several commercial and open source nestack solutions available today. Most stacks
offer standard protocol suites, and some includemgte applications to help you extend your device's
basic feature seEigure 13-%shows some of the common network protocol compisnecluded with
most networking stacks. We'll list even more protsdater in this chapter as we describe particular
networking solutions.

Figure 13-9. Common network protocol components

Applications

Email
HTTP Server Telnet Server (SMTP Client)

Network Stack

Network Interface

Serial Port Ethernet Port

One of the keys in deciding which stack will besybur device is to determine the resource
requirements the software needs in order to opefaeamount of data the device transmits and
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receives during communication sequences shoulddadsate which solution is right for your design.
For example, if your device is a sensor node tlaktes up every hour to transmit a few bytes of data,
compact network stack implementation is ideal.dntrast, a video monitoring system that is congtant
transmitting large amounts of data might need ekstaplementation that offers better packet buffer
management.

Implementations focused on small embedded devit®s aetworking to be integrated into even the
most resource-constrained system. It is importaattthe "lightweight" network stack implementation
you choose allows communication with standard;$afile TCP/IP devices. An implementation that is
specialized for a particular device and networkhmhiause problems by limiting your ability to exten
the device's network capabilities in other, geneetworks.

It is always possible to go off and roll your owetwork stack. However, given the wide range of
solutions available in the open source commungyetaging existing technology is usually the better
choice and enables you to quickly move your develant forward.

In the following list of software network stackseviocus on open source solutions that are ideal for
resource-constrained embedded devices. This Igiti;mtended to be comprehensive, but rather a
starting point for further investigation. All ofélmetworking stacks listed include TCP/IP protocol
support. A brief description of each network stacikcluded; for more detailed information, referthe
specific web pages listed. (BSD networking codsoimiething of an industry standard and therefore
appears as the basis of many of the projects l)sted

IwlP (http://savannah.nongnu.org/projects/Iyvip

This " lightweight IP" stack is a simplified butlfigscale TCP/IP implementation. IwIP was
designed to be run in a multithreaded system witllieations executing in concurrent threads,
but it can also be implemented on a system witbperating system. In addition to the standard
TCP/IP protocol support, IwIP also includes Intér@entrol Message Protocol (ICMP),
Dynamic Host Configuration Protocol (DHCP), Addr&sesolution Protocol (ARP), and UDP.

It supports multiple local network interfaces. IHBs a flexible configuration that allows it to be
easily used in a wide variety of devices and scaidd different resource requirements.

OpenTCP littp://www.opentcp.ory

Tailored to 8- and 16-bit microcontrollers, OpenTiG€orporates the ICMP, DHCP, Bootstrap
Protocol (BOOTP), ARP, and UDP. This package atstudes several applications, such as a
Trivial File Transfer Protocol (TFTP) server, a POffice Protocol Version 3 (POP3) client to
retrieve email, Simple Mail Transfer Protocol (SMHRpport to send email, and a Hypertext
Transfer Protocol (HTTP) server for web-based dewanagement.
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TinyTCP (ttp://www.unusualresearch.com/tinytcp/tinytcp.,htm

This network stack is designed to be very modularta include only the software required by
the system. For example, different protocols cambleided based on your configuration.
TinyTCP provides a BSD-compatible socket librarg arcludes the ARP, ICMP, UDP, DHCP,
BOOTP, and Internet Group Management Protocol (IEMP

uC/IP fttp://ucip.sourceforge.net

uC/IP (pronounced mew-kif)is designed for microcontrollers and based on B&®vork
software. Protocol support includes ICMP and PwrARoint Protocol (PPP).

[T The u at the front of uC/IP and ulP is a crudedmmmon way to represent the Greek letter
mu

ulP (http://www.sics.se/~adam/yip

This "micro IP" stack is designed to incorporatéydghe minimal set of components necessary
for a full TCP/IP stack solution. There is supdortonly a single network interface. Application
examples included with ulP are SMTP for sendingierad elnet server and client, an HTTP
server and web client, and Domain Name System (DB)lution.

Each network stack has been ported to various psoce and microcontrollers. The device driver
support for the network interface varies from staxktack. It is a good idea to review the licefusehe
network stack you decide to use, to make sureds amt place undesirable limitations or requirement
on your product.

In addition, some operating systems include or heete/ork stacks ported to them. The operating
systems covered earlier in this book, eCos and dddukLinux (see Chaptetd and12), both offer
networking support modules. eCos includes the O&hB-reeBSD, and IwIP network stacks as well
as application-layer support for many of the exeshfitatures discussed previously. Embedded Linux,
having been developed for a desktop PC environmoéiets extensive network support.

If a network stack is included or already existyonir device, several embedded web servers are
available to incorporate web-based control. Oné gpen source solution is the GoAhead WebServer
(http://www.goahead.com

Embedding a networking stack is no longer a dagrtask that requires an enormous amount of
resources. The solutions listed previously canldyioe leveraged and integrated to bring networking
features to any embedded system. Tailoring onbeohetwork stack solutions to the specific
characteristics of a device ensures that the syatiéiraperate at its optimal level and best utileaestem
resources.
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Chapter 14. Optimization Techniques
Things should be made as simple as possible, h#nyosimpler.
—Albert Einstein

This chapter offers some tips to optimize codesthuce resource utilization. These techniques can be
roughly divided into strategies for reducing memuosgge, increasing code efficiency, and lowering
power requirements. The need for low-cost versadraur products drives hardware designers to
provide just barely enough memory and processingepto get the job done.

Most of the optimizations performed on code invadvieadeoff between execution speed and code size.
Your program can be made either faster or smadilgrnot both. In fact, an improvement in one ofthe
areas can have a negative impact on the otherufi to the programmer to decide which of these
improvements is most important. Given that singée@ of information, the compiler's optimization
phase can make the appropriate choice whenevesea sersus size tradeoff is encountered.

The first step in optimization is to determine whjmroblems you have. You might have size issues,
speed issues, or both. If you have one type o&isgau can have the compiler help you out with the
optimization. If you have both size and speed isswe recommend letting the compiler do what it can
to reduce the size of your program. Then you aadh tie time-critical code or bottlenecks (where the
program is spending most of its time) and manuzptymize that code for speed. (In battery-powered
devices, every unnecessary processor cycle resukgluced runtime; therefore, the thing to do is
optimize for speed across the entire application.)

Execution speed is usually important only withimtaim of those few portions of the code that have
short deadlines and those most frequently execiliteete are many things you can do to improve the
efficiency of those sections by hand. However, cgide is a difficult thing to influence manuallyych
the compiler is in a much better position to mdke thange across all of your software modules.

14.1. Increasing Code Efficiency

By the time your program is working, you might aldg know, or have a pretty good idea, which
functions and modules are the most critical forralleode efficiency. ISRs, high-priority tasks,
calculations with real-time deadlines, and funcsitimat are either compute-intensive or frequently
called are all likely candidates.

A tool called a profiler , included with some soéire development suites, can be used to narrow your
focus to those routines in which the program spenaist (or too much) of its time. A profiler collsct
and reports execution statistics for a programseé&hexecution statistics include the number of ¢alls
and the total time spent in each routine.

Once you've identified the routines that requireaggr code efficiency, you can use the following
technigues to reduce their execution time. Notetti@techniques described here are very compiler-
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dependent. In most cases, there aren't generalthdécan be applied in all situations. The best to
determine if a technique will provide improvemesnta look at the compiler's assembly output.

Inline functions

In C99, the keyworthiine can be added to any function declaration. Thiswkeg asks the
compiler to replace all calls to the indicated fiimre with copies of the code that is inside. This
eliminates the runtime overhead associated witfiuthetion call and is most effective when the
function is used frequently but contains only a fexgs of code.

Inline functions provide a perfect example of howe@ution speed and code size are sometimes
inversely linked. The repetitive addition of thdéine code will increase the size of your program
in direct proportion to the number of times thedtion is called. And, obviously, the larger the
function, the more significant the size increask lvd. However, you will lose the overhead of
setting up the stack frame if parameters are paagethe function. The resulting program runs
faster but requires more code memory.

Table lookups

A switch statement is one common programming techniquestiaild be used with care. Each
test and jump that makes up the machine languagkementation uses up valuable processor
time simply deciding what work should be done n&xtspeed things up, try to put the
individual cases in order by their relative freqeyenf occurrence. In other words, put the most
likely cases first and the least likely cases [@kts will reduce the average execution time,
though it will not improve at all upon the worstsegatime.

If there is a lot of work to be done within eaclseat might be more efficient to replace the
entireswitch  statement with a table of pointers to functiors. €&ample, the following block
of code is a candidate for this improvement:

enum NodeType {NODE_A, NODE_B, NODE_C};

switch (getNodeType( ))

{
case NODE_A:

case NODE_B:

caée NODE_C:
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To speed things up, replace thigtch statement with the following alternative. The tfijpgsirt of
this is the setup: the creation of an array of fimmcpointers. The second part is a one-line
replacement for thewitch  statement that executes more efficiently.

int processNodeA(void);
int processNodeB(void);
int processNodeC(void);

/* Establishment of a table of pointers to function s. */
int (* nodeFunctions[])( ) = {processNodeA, proces sNodeB, processNodeC};
/* The entire switch statement is replaced by the n ext line. */

status = nodeFunctions[getNodeType()]( );

Hand-coded assembly

Some software modules are best written in asselabguage. This gives the programmer an
opportunity to make them as efficient as possiblmugh most C compilers produce much
better machine code than the average programmsé&iljed and experienced assembly
programmer might do better work than the compiberaf given function.

For example, on one of our past projects, a dijitating algorithm was implemented in C and
targeted to a TI TMS320C30 DSP. The compiler waabiento take advantage of a special
instruction that performed exactly the mathematigmrations needed. By manually replacing
onefor loop of the C program with inline assembly instimes that did the same thing, overall
computation time decreased by more than a factt of

Register variables

The keywordegister ~ can be used when declaring local variables. T$ks ghe compiler to
place the variable into a general-purpose regiatber than on the stack. Used judiciously, this
technique provides hints to the compiler abouttiost frequently accessed variables and will
somewhat enhance the performance of the functibe.nore frequently the function is called,
the more likely it is that such a change will impedhe code's performance. But some compilers
ignore theregister  keyword.

Global variables
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It is sometimes more efficient to use a globalafale than to pass a parameter to a function. This
eliminates the need to push the parameter ontstéiok before the function call and pop it back
off once the function is completed. In fact, thestefficient implementation of any subroutine
would have no parameters at all. However, the deti® use a global variable can also have
some negative effects on the program. The softeagieering community generally
discourages the use of global variables in an &ftopromote the goals of modularity and
reentrancy, which are also important considerations

Polling

ISRs are often used to improve a program's respemsss. However, there are some rare cases
in which the overhead associated with the integ@gtually causes inefficiency. These are cases
in which the average time between interrupts thefsame order of magnitude as the interrupt
latency. In such cases, it might be better to wdléeng to communicate with the hardware device.
But this too can lead to a less modular softwasegte

Fixed-point arithmetic

Unless your target platform features a floatingapprocessor, you'll pay a very large penalty for
manipulatingflioat  data in your program. The compiler-supplied flogtpoint library contains

a set of software subroutines that emulate theifiggpoint instructions. Many of these functions
take a long time to execute relative to their ietegpunterparts and also might not be reentrant.

If you are using floating-point for only a few calations, it might be better to implement the
calculations themselves using fixed-point arithmetior example, two fractional bits
representing a value of 0.00, 0.25, 0.50, or Oré%easily stored in any integer by merely
multiplying the real value by 4 (e.gs 2). Addition and subtraction can be accomplishadhe
integer instruction set, as long as both value® lthe same imaginary binary point.
Multiplication and division can be accomplished ikanhy, if the other number is a whole
integer.

It is theoretically possible to perform any flogtpoint calculation with fixed-point arithmetic.
(After all, that's how the floating-point softwdirary does it, right?) Your biggest advantage is
that you probably don't need to implement the en®EE 754 standard just to perform one or
two calculations. If you do need that kind of coetplfunctionality, stick with the compiler's
floating-point library and look for other ways tpeed up your program.

Variable size
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It is typically best to use the processor's natagster width for variables whenever possible
(whether it is 8, 16, or 32 bits). This allows ttwmpiler to produce code that takes advantage of
the fast registers built into the processor's meebpcodes. Obviously, you need to ensure that
the variable size accommodates the number rangéhthaariable represents. For example, if
you need a count that goes from 0 to 512, you cae'tan 8-bit variable.

A variable size tailored to the processor can spsed up processing by limiting the number of
external memory accesses. If a processor has & tiéith bus and it needs to access a 32-bit
variable in external RAM, two data fetches muspbdormed for the processor to get the
variable.

C99 defines integer typ@s_fastN_t anduint_fastN_t (whereN represents the integer
length) instdint.h These types are meant to be used when you nésakat X bits” (e.g., X =

16) to store your data but don't care if the figlthrger than X in width, to make access as fast a
possible. These "fast" integer types are thus mal dor use with peripheral registers, which
always have a fixed width that cannot be largesroaller than X.

Loop unrolling

In some cases, repetitive loop code can be optdrbyeperforming loop unrolling. In loop
unrolling, the loop overhead at the start and dralloop is eliminated. Here's an example of a
for loop:

for (idx = 0; idx < 5; idx++)

value[idx] = incomingData[idx];

}

Here's the unrolled version without the loop ovarhe

value[0] = incomingData[0];
value[1] = incomingData[1];
value[2] = incomingData[2];
value[3] = incomingData[3];
value[4] = incomingData[4];

Some compilers offer loop unrolling as an optimi@atin other cases, it might be better for the
developer to code it. It is helpful to check theeambly output from the compiler to see whether
efficiency has actually been improved.

The amount of rolling that you—or the compiler—chedo do must balance the gain in speed
versus the increased size of the code. Loop ungpilicreases code size—another situation
where you must trade code size for speed. Als@ towolling can be used only when the
number of iterations through the loop are fixede@grample of an optimized implementation of
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loop unrolling is the coding technique known asf3ulevice
(http://en.wikipedia.org/wiki/Duff's_devige

14.2. Decreasing Code Size

As stated earlier, when it comes to reducing cazke gour best bet is to let the compiler do thekvo
for you. However, if the resulting program is stdb large for your available ROM, there are selvera
programming techniques you can use to further redhe size of your program.

Once you've got the automatic optimizations workiagge a look at these tips for further reducing th
size of your code by hand:

Avoid standard library routines

One of the best things you can do to reduce tleedigour program is to avoid using large
standard library routines. Many of the largestiroeg are costly in terms of size because they try
to handle all possible cases. For examplesthgr  function might be small, but a call to it
might drag other functions suchsagower , strcmp , strcpy , and others into your program
whether they are used or not.

It might be possible to implement a subset of theefionality yourself with significantly less
code. For example, the standard C libragptstt  routine is notoriously large. Much of this
bulk is located within the floating-point maniputat routines on which it depends. But if you
don't need to format and display floating-pointues ¢oa %e %f, Or %g, you could write your
own integer-only version aprintf  and save several kilobytes of code space. In dafetw
implementations of the standard C library (Cygnosislib comes to mind) include just such a
function, calledsiprintf

Use goto statements

As with global variables, good software engineepragtice dictates against the use of this
technique. But in a pinclagpto statements can be used to remove complicatedotairnctures
or to share a block of oft-repeated code.

For example, many programmers useddte statement to bail out of a routine in case ofrerro
In this way, the programmer can group togethertaimgs that must be done before exiting the
routine, as shown here:

int functionWork(void)

/* Do some work here. */
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[* If there was an error doing the work, exit. */
goto CLEANUP;

/* Do some more work here. */

[* If there was an error doing the work, exit. */
goto CLEANUP;

[* Otherwise, everything succeeded. */
return SUCCESS;

CLEANUP:
/* Clean up code here. */

return FAILURE;
}

In addition to these techniques for reducing code, several of the ones described in the pricii@ec
could be helpful, specifically table lookups, haswtied assembly, register variables, and global
variables. Of these techniques, the use of handetadsembly usually yields the largest decrease in
code size.

14.3. Problems with Optimizing Compilers

The GNU C compiler has several optimization comrdiamel options, all of which are variants-e®D.
Specifying—-O3turns on all availablgccoptimizations, regardless of their effects ongpeed-versus-
size tradeoff. The command-line optie@salso optimizes the code for size. For a detailgdamation
of the differentgcc optimization levels, refer to thgec online manual dbttp://gec.gnu.org/onlinedocs

Murphy's Law dictates that the first time you emalhle compiler's optimization feature, your pregigu
working program will suddenly fail. Perhaps the tastorious of the automatic optimizations is "dead
code elimination.” This optimization eliminates eatiat the compiler believes to be either redundant
irrelevant. For example, adding zero to a variabtpiires no runtime calculation whatsoever. But you
might still want the compiler to generate thoseglgvant” instructions if they perform some funatio
that the compiler doesn't know about.

For example, given the following block of code, mogtimizing compilers would remove the first
statement because the valuepafontrol  is not used before it is overwritten (on the tHing):

*pControl = DISABLE;
*pData ='a';
*pControl = ENABLE;

But what ifpControl andpbData are actually pointers to memory-mapped devicesteg? In that case,
the peripheral device would not receive theABLE command before the byte of data was written. This
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could potentially wreak havoc on all future intdras between the processor and this peripheral. To
protect yourself from such problems, you must dectdl pointers to memory-mapped registers and
global variables that are shared between tasks f@sk and an ISR) with the keywakdatile . And if
you miss just one of them, Murphy's Law will coneek to haunt you in the final days of your
project—guaranteed.

u Never make the mistake of assuming that the opéichprogram will behave the
— same way as the unoptimized one. You must complegést your software at
each new optimization level to be sure its behalasn't changed.

To make matters worse, debugging an optimized progs challenging, to say the least. With the
compiler's optimization enabled, the correlatiotween a line of source code and the set of processo
instructions that implements that line is much veaKhose particular instructions might have moved
or been split up, or two similar code blocks migbw share a common implementation. In fact, some
lines of the high-level language program might hia@en removed from the program altogether (as they
were in the previous example)! As a result, youhhize unable to set a breakpoint on a particutar li

of the program or examine the value of a variablaterest.

14.4. Reducing Memory Usage

In some cases, RAM rather than ROM is the limifeactor for your application. In these cases, you'll
want to reduce your dependence on global datastéuol, and the heap. These are all optimizations
better made by the programmer than by the compiler.

Because ROM is usually cheaper than RAM (on a per-basis), one acceptable strategy for reducing
the amount of global data might be to move conddatd into ROM. This can be done automatically by
the compiler if you declare all of your constantadaith the keyworaonst . Most C compilers place all
of the constant global data they encounter intpegigl data segment that is recognizable to thetdoc

as ROM-able. This technique is most valuable ifghage lots of strings or table-oriented data wilt

not change at runtime.

If some of the data is fixed once the program mimg but not necessarily constant, the constatat da
segment could be placed in a hybrid memory dewcé as flash or EEPROM. This memory device
could then be updated over a network or by a tec@miassigned to make the change. An example of
such data is the sales tax rate for each locadhioh your product will be deployed. If a tax rate
changes, the memory device can be updated, bui@@diRAM can be saved in the meantime.

Stack size reductions can also lower your progr&ABI requirement. One way to figure out
approximately how much stack you need is to fi#l &mtire memory area reserved for the stack with a
special data pattern, such as OXAAAA. Then, afterdoftware has been running for a while—under
both normal and stressful conditions—use a debuggexamine the modified stack. The part of the
stack memory area that still contains your spedash pattern has never been overwritten, so you can
reduce the size of the stack area by that ambtint.
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[l Of course, you probably want to leave a littleraxdpace on the stack, in case your testing dast't
long enough or did not accurately reflect all pbesruntime scenarios. Never forget that a stack
overflow is a potentially fatal event for your seftre and should be avoided at all costs.

Be especially conscious of stack space if you anmega real-time operating system. Preemptive
operating systems create a separate stack fortasichThese stacks are used for function calld8Rg
that occur within the context of a task. You catedmine the amount of memory required for each task
stack in the manner previously described. You madbo try to reduce the number of tasks or switch t
an operating system that has a distinct "interstgatk" for execution of all ISRs. The latter metlvaah
significantly reduce the stack size requiremergaith task.

The size of the heap is limited to the amount oMRI&ft over after all of the global data and stack
space has been allocated. If the heap is too syaait,program will not be able to allocate dynamic
memory when it is needed, so always be sure to amerthe result ahalloc with NULL before
dereferencing the memory you tried to allocatgoli've tried all of these suggestions and your anog
is still requiring too much memory, you might hawechoice but to eliminate the heap altogethers Thi
isn't entirely bad in the case of embedded systeuinsh frequently allocate all memory needed by the
system at initialization time.

Note that many embedded programmers avoid thefusallac , and thus the need for a heap,
altogether. But the key benefit of dynamic memdlgcation is that you don't need to spend RAM to
keep variables around that are only used briefthe&program. This is a way to reduce total memory
utilization.

14.5. Power-Saving Techniques

A major concern in battery-powered embedded systEagn is power consumption. In this section,
we take a brief look at areas where embedded satean assist in conserving the system's vitalggner
source.

Power consumption is a major concern for portableattery-operated devices. Power issues, such as
how long the device needs to run and whether ttteries can be recharged, need to be thought out
ahead of time. In some systems, replacing a battexydevice can be a big expense. This means the
system must be conscious of the amount of poweses and take appropriate steps to conserve battery
life.

There are several methods to conserve power iméee@ded system, including clock control, power-
sensitive processors, low-voltage ICs, and cirshiittdown. Some of these techniques must be
addressed by the hardware designer in his seleafithe different system ICs. There may be lower-
power versions of certain peripherals. Some poweing techniques are under software control.

It might seem ideal to select the fastest and posaterful processor available for a particular enusetl
system. However, one of the tasks of the hardwasegder is to use just enough processing power to
enable the device to get its job done. This heddsice the power consumed by the device. The
processor selected plays a key role in determitiiagamount of power an embedded system will
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consume. In addition, some processors can autcaigtshut down different execution units when they
are not in use.

14.5.1. Processor Modes
One software technique offered by many embeddeckpsors to conserve power is different operating
modes. These modes allow the software to scalegsoc power consumption to match the moment-by-

moment needs of the application. For example, tteer board's PXA255 processor has four operating
modes:

Turbo mode

The processing core runs at the peak frequencyiniidimg external memory accesses would be
worthwhile in this mode, because the processor vbale to wait for the external memory.

Run mode

The processor core runs at its normal frequencig iSlthe normal or default operating mode.

Idle mode

The processor core is not clocked, but the otheplperal components operate as normal.

Sleep mode
This is the lowest power state for the processor.

Understanding the details of these modes and hagttmto and out of them is key. For example, the
PXA255 can conserve power by entering and exitittgymode multiple times in a second, because the
processor is quickly reactivated in the prior stelewever, in sleep mode, the processor statetis no
maintained and may require a complete system raloen exiting this mode.

Operating the processor in different modes can gaite a bit of power. The power consumption fa th
PXA255 processor (running at 200 MHz) in normal nuode is typically 178 mW. While in idle mode,
the PXA255 typically consumes 63 mW.

There are several issues to consider when plarthengower management software design. First, you
must ensure that each task is able to get enoudéscto perform its assigned work. If a system diesib
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battery life by entering idle modes often but isglunable to perform its work, the product failsrteet
its design goals.

You also need to determine when the system is @ioggcanything and how to wake up the processor
when it needs to operate, and you need to know exetts will wake up the system. For example, in an
embedded system that sends some data across aketwgoy few minutes, it makes sense to be able to
shut down the device to conserve power until finge to send the data. The device must still be &bl
wake up in case an error condition arises. Theeefgsu must understand how a peripheral circuit
wakes up the processor when the processor neegetate (including how long it takes the circuit to
wake up and whether any reinitialization needsgadne).

The optimization techniques presented earlierismdhapter can be used to conserve power as well. B
reducing the amount of execution time for the masks in a system, you allow the system to spend
more time in its low-power state.

Even though the processor is in idle mode, varpmrgpherals still operate and can be programmed to
wake up the processor. Typically, interrupts camniged to wake up the processor to perform some task
This is why power management must be considered wasigning the software. For example, some
behaviors can be achieved by polling. But wheretrents are less frequent and power management is
an issue, it makes sense to use interrupts rdtaargolling because this allows the processoreteysl

for the maximum amount of time before waking upémdle an event. When you choose to use polling,
the processor must constantly perform the pollipgration, which typically happens at a set interval
This wastes power when the polling operation execand no events have occurred.

You can also take advantage of peripherals thaatpevhile the processor is in idle mode. For
example, if you are transferring data from an exdeperipheral into RAM and need to process tha dat
once a certain amount of data is received, yowsarthe DMA controller. This way, instead of the
processor handling each byte received, it sleeple Wie data is transferred. You can configure the
DMA controller to interrupt the processor once fthaga has been received.

14.5.2. Clock Frequency

Another power-saving technique that can be comtdadbly software is to vary processor clock speeds.
Some processors accept a fixed-input clock frequentfeature the ability to reduce internal clock
speeds by programming clock configuration regist8oftware can reduce the clock speed to save
power during the execution of noncritical tasks amlease the clock speed when processing demands
are high.

The PXA255 datasheet shows the power consumptidle tie processor core operates at different

frequenciesTable 14-1shows a comparison for three different PXA255 adoek frequencies and the
associated power consumption at each frequency.

Table 14-1. PXA255 power consumption comparison

Processor core clock speed (MHz) Power consumptigmW)
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Table 14-1. PXA255 power consumption comparison

Processor core clock speed (MHz) Power consumptigmW)
400 411
300 283
200 178

As the software designer, you need to understarad dppens during the frequency change
sequence—what to do if an interrupt occurs durinegftequency change and what needs to be
reconfigured (such as DRAM refresh cycles) forrbes frequency.

You will need comprehensive knowledge of all sofievaperation in the system if you decide to alter
the processor frequency on the fly. For exampleait be tricky to know when to lower the clock spee
when a multitasking RTOS is used.

In other cases, particular peripherals can be cetelyldisabled when they are not in use. For exampl
if a particular peripheral module is not used i@ BXA255 processor, the clock to that unit can be
disabled using the Clock Enable Register (CKEN).

14.5.3. External Memory Access

There are several things that can be done to rezkteenal memory accesses. If a cache is available,
you can enable it to avoid having the processahfdata or instructions from external memory. Ahgac
is very high-speed, on-chip memory that suppliesntiost recently used instructions and/or datado th
processor with no or few wait states.

Similarly, internal processor memory can be usealailable. In some cases, the internal memory can
be used for both data and code. It might not bsilid&ato incorporate all the system software iefinal
memory. If there is not enough memory availabletierentire system software, you must determine
what data and code should be included. It's basictade the stack and frequently used variables or
functions for limiting external memory accessesafrembedded system where power consumption is
the top priority, it might make sense to switclatprocessor with more on-chip memory in order to
reduce off-chip accesses.

Optimization techniques can help here as well.déaver optimization, instead of focusing solely on
speed or code size, you need to focus on analgzidg to determine how to reduce external bus
transactions.

These are just a few considerations to keep in mimeh working on power management software.
Future products may include technology with sefferging sources of energy. There are ways to
harvest energy for circuits that are self-powergidgisources such as vibration, light, and thermal
sources. These techniques are discussed in th200beEmbedded Systems Design article "Energy-
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Harvesting Chips: The Quest for Everlasting Lif@hich can be found online at
http://www.embedded.com

14.6. Limiting the Impact of C++

One of the issues we faced upon deciding to whiteliook was whether or not to include C++ in the
discussion and examples. For almost all of thegotsjwe have worked on throughout our respective
careers, the embedded software was written in Gaasembly language. In addition, there has been
much debate within the embedded software commaiibyt the appropriateness of C++. It is widely
believed that C++ programs produce larger execesatbiat run more slowly than programs written
entirely in C. However, C++ has many benefits faxgpammers.

We believe that many readers will face the chofagstng C++ in their embedded programming. This
section covers some of the C++ features that aRilUf®r embedded system software and warns you
about some of the more expensive features in tigukge.

Embedded C++

You might be wondering why the creators of the Cariguage included so many features
that are expensive in terms of execution time atksize. You are not alone; people around
the world have wondered the same thing—especiadiyusers of C++ for embedded

programming. Many of these expensive featuresearent additions that are neither strictly
necessary nor part of the original C++ specificatibhese features have been added one by
one as part of the ongoing "standardization" preces

In 1996, a group of Japanese processor vendoredjoaagether to define a subset of the C++
language and libraries that is better suited fopesded software development. They call
their industry standard Embedded C++ (EC++). ECertegated a great deal of initial interest
and excitement within the embedded community.

A proper subset of the draft C++ standard, EC++®prietty much anything that can be left
out without limiting the expressiveness of the uthdeg language. This includes not only
expensive features such as multiple inheritanceyalibase classes, runtime type
identification, and exception handling, but alssmsoof the newest additions such as
templates, namespaces, and new-style casts. Wéftaisa simpler version of C++ that is
still object-oriented and a superset of C, butdigsificantly less runtime overhead and
smaller runtime libraries.

A number of commercial C++ compilers support therEGtandard as an option. Several
others allow you to manually disable individualdaage features, thus enabling you to
emulate EC++ (or create your very own flavor of @iet language).

Of course, not every feature of C++ is expensindatt, the earliest C++ compilers used a technpolog
called C-front to turn C++ programs into C, whichsathen fed into a standard C compiler. That this i
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even possible dgmonstrates that many of the sycahdifferences between the languages have tttle
no runtime cost.' ! For example, the definition ofctass is completely benign. The list of public and
private member data and functions is not much ihffefrom astruct  and a list of function prototypes.
However, the C++ compiler is able to usejihigic andprivate keywords to determine which
method calls and data accesses are allowed anibpedh Because this determination is made at
compile time, there is no penalty paid at runtiifieus, the use of classes alone affects neitherdte
size nor efficiency of your programs.

T . - . .
['] Moreover, we want to make clear that there is ety for compiling an orginal C program with a
C++ compiler.

Default parameter values are also penalty-free.cbinepiler simply inserts code to pass the default
value whenever the function is called without aguanent in that position. Similarly, function name
overloading involves only a compile-time code mmdifion. Functions with the same names but
different parameters are each assigned unique ndumieg) the compilation process. The compiler alter
the function name each time it appears in your amog and the linker matches them up appropriately.

Operator overloading is another feature that mightised in embedded systems. Whenever the
compiler sees such an operator, it simply repléoggh the appropriate function call. So in the€+
code listing that follows, the last two lines aggivalent, and the performance penalty is easily
understood:

Complex a, b, c;

¢ = operator+(a, b); /I The traditional w ay: Function Call
c=a+b; /I The C++ way: Oper ator Overloading

Constructors and destructors have a slight penBftgse special methods are guaranteed to be called
each time an object of the type is created or goésf scope, respectively. However, this small anto
of overhead is a reasonable price to pay for fdwes. Constructors eliminate an entire class of C
programming errors having to do with uninitializéata structures. This feature has also proved usefu
for hiding the awkward initialization sequencesoasated with some classes.

Virtual functions also have a reasonable cost/beratfo. Without going into too much detail about
what virtual functions are, let's just say thatypobrphism would be impossible without them. And
without polymorphism, C++ would not be a true objegented language. The only significant cost of
virtual functions is one additional memory lookugfdre a virtual function can be called. Ordinary
function and method calls are not affected.

The features of C++ that are typically too expeasor embedded systems are templates, exceptions,
and runtime type identification. All three of thasegatively impact code size, and exceptions and
runtime type identification also increase executiore. Before deciding whether to use these feature
you might want to do some experiments to see hew will affect the size and speed of your own
application.
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Appendix 1. The Arcom VIPER-Lite Development Kit

All of the examples in this book have been writt@nand tested on an embedded platform called the
VIPER-Lite. This board is a high-speed embeddedrober that is designed, manufactured, and sold by
Arcom. The following paragraphs contain informatedyout the hardware, software development tools,
and instructions for ordering a board for yourself.

The VIPER-Lite hardware includes the following:

Processor: PXA255 XScale (based on the ARM v.5Thitecture) (200 MHz)

RAM: 64 MB of SDRAM

ROM: 16 MB of flash and 1 MB boot ROM

Three RS232-compatible serial ports (with exteBR9 connectors)

10/100baseTx Ethernet port

USB v1.1 client port

CompactFlash slot

Four programmable timer/counters

Sixteen-channel DMA controller

Watchdog timer

Real-time clock

Eight buffered digital inputs

Eight buffered digital outputs

RedBoot debug monitor program resident in boot ROM

Embedded Linux (based on kernel version 2.6) resideflast™

[T The Windows CE operating system can be specifisttad when ordering the VIPER-Lite board.
There is an additional cost for the VIPER-Lite witie Windows CE operating system. Examples in the

book target the embedded Linux operating systesiaeiof the board.

JTAG port for system debugging
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Arcom has also built an add-on module ideal forraay embedded software. The add-on board was
designed specifically for the examples shown ia book and is included with a book-specific version
of the VIPER-Lite development kit. The VIPER-Litddxon module includes the following:

Three LEDs

Four buttons and jumpers

Four opto-isolated inputs

Four opto-isolated outputs

Two relay outputs

A buzzer

A small prototyping area

The VIPER-Lite development kit includes all of thecessary cables for interfacing to the board and a
power supply. A photograph of the complete VIPER:Idevelopment kit in its blue case is shown in

Figure A-1

Figure 1-1. Arcom VIPER-Lite development system
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The CD-ROM that comes with the Arcom developmeniridludes all VIPER-Lite manuals and
reference documents, datasheets for all compoperttse board, source code for RedBoot, embedded
Linux packages with source code, and binary imégeRedBoot and embedded Linux.

The software development tools for the Arcom baarllocated on the book's web site. We built these
tools ourselves for the ARM processor by followthg instructions shown ippendix C The software
tools include the GNU C compileg€o, assembleras), linker (d), and debuggeg(h). We encourage
you to investigate the other GNU tools includedha development kit. All programs in this book were
built using the tools contained on the book's weh s

For readers of this book, the VIPER-Lite developtiéiis available at a special discount price 29%
(plus shipping). Use one of the following order esdvhen contacting Arcom, depending on the
operating system you want:

VIPER-Lite Embedded Linux Development Kit

VIPER-Lite Windows CE Development Kit
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Make sure you mention the book so that you recigeadd-on module. Here is Arcom's contact
information:

Arcom
7500 West 161st Street
Overland Park, KS 66085

Web: http://www.arcom.com

America and Asia: +1 913-549-1000us-sales@arcom.com

EMEA: +44 (0)1223-403410 @ales@arcom.co.uk

Appendix 2. Setting Up Your Software Development
Environment

This appendix shows the procedure for setting Bg3NU software development tools and example
source code. The GNU software development tooilgpgatocedure is broken down into two sections:
one for Windows and one for Linux. The GNU softwarels we use for the example code include the
gcecversion 3.4.4asversion 2.15ld version 2.15gdbversion 6.3, andinutils version 2.15.

This book's web site contains several compress#varfiles that expand to include the various seur
code and tools used in this book. These files are:

windowshost.zip

Contains the Cygwin setup files and the WindowstdaSNU software development tools
linuxhost.tar.gz

Contains the Linux-based GNU software developmauist

ecos.tar.gz

Contains the eCos source code repository and the é€/elopment tools (sé@pendix Dfor
additional information on setting up the eCos lestironment)

examples.zipndexamples.tar.gz

Contain the book's example code
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The Linux example code @hapter 1zhas not been built and tested using a hqst
computer running Windows. It is common to use aukihost system for
s developing embedded Linux applications.

= I

Building applications for Linux using a Windows hasbeyond the scope of thi
book. It involves the use of the Cygwin free softavebolset, a somewhat more
involved procedure than the one described in thépter.

U7

'B'.1. Windows Host Installation

The GNU software development tools were run onrdied@ 4 computer with Windows XP (Service
Pack 2). The first phase of the Windows setup iastall Cygwin, a Unix environment for Windows.
Additional information about Cygwin can be foundioa athttp://www.cygwin.com

The first step in the Windows host installationgadure is to download thveindowshost.ziffile and
unzip it to temporary directory.

'‘B'.1.1. Cygwin Installation

Cygwin is used for building all of the exampleghis book under Windows. The following instructions
assume that: is your hard disk drive where the files are irlethl The Cygwin environment is installed
under theC:\\cygwindirectory.

1.

2.

Run the Cygwin installation prograsetup.exeThe Cygwin install files are located under the
cygwindirectory in thevindowshost.zifile.

The first dialog box is titled Cygwin Net Releasatip Program. This gives the details about the
setup program version information. Click Next tmtoue.

Looking at the commands and directories here ngght bit confusing, because

¥
-.
o,
[

Windows and Unix environments differ in how theparate directories:
% Windows uses the backslash Y and Unix uses the forward slagh.(

= I

Now select the directory from which to install @ggwin tools. In this case, we select "Install
from Local Directory" and then click Next.

In the next dialog box, select the location on yoard drive where you want the Cygwin tools to
be installed. Leave the default@3s\cygwin (If you want to choose an alternate destination,
change the drive and directory location accordindtythe Install For selection box, select All
Users, and for the Default Text File Type, sele@3 Then click Next.

Tell the Cygwin setup where the local files thatiyeant to install reside. Browse to ttygwin
temporary directory, where you unzipped the Cygwastall files, and then click Next. This will
cause the Cygwin setup program to inventory thdaia tools and display the available list.
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Select the tools to install. Make sure all toolst tyou want to install are selected for installatio
In order to add tools, click on the View buttongeet the full list of packages available for
installation. Then, click on the circular arrowtive New column in order to select the
appropriate package for installation. This shotiddrge the text next to the circular arrow from
"Skip" to the version of the particular packaget thdl be installed. After all packages have been
selected for install, click Next to start the iristgon.

After the installation is complete, click Finishhi$ will add Cygwin icons to the desktop and
start menu. Click Ok on the Installation Complesal box.

At this point, you should verify that you hav€a\cygwindirectory with the Cygwin directories and
files installed.

'B'.1.2. GNU Software Tools Installation

The next phase of the Windows host tools setup $&t up the GNU software development tools, as
shown here. The GNU software tools are installedeuthe\\ cygwin\\optdirectory.

1.

The Windows version of the ARM-based GNU toolssated under thé gnutoolsdirectory in
thewindowshost.zifile. Unzip the filegnutools.zigo the\\cygwin\\optdirectory on your hard
drive.

Set the path to the GNU tools location in the Cyglashshell. To ensure the path is set
correctly each time the Cygwhbrashshell is started, edit tHeshprofile file. The file is named
.bash_profileand is located under tigHOME directory (which is specific to your environment).

Add the following to the last line in this file:
PATH=/opt/gnutools/arm-elf/bin:$PATH ; export PATH

You should notice that the GNU development tootsiastalled unde€:\\cygwin\\opt\\gnutoolslf you
look under tharm-elf \\bindirectory, you should see the GNU tools (sucgasas gdb, andld)
executable files, prepended with the naama-elf This describes the processor for which the taots
built, arm, and the object file formag|f (which stands for "executable and linkable forrpat"

To test that you installed the tools correctly aetlup the path properly, open a Cygwashshell and
enter the command:

# arm-elf-gcc -v

You should see this response:

Reading specs from /opt/gnutools/arm-elf/lib/gcc/ar m-elf/3.4.4/specs
Configured with: /src/gcc-3.4.4/configure --target= arm-elf --prefix=/opt/gnutool
s/arm-elf --enable-languages=c,c++ --with-gnu-as -- with-gnu-Id --with-newlib --w
ith-gxx-include-dir=/opt/gnutools/arm-elf/arm-elf/i nclude -v

Thread model: single
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gcc version 3.4.4

'B'.2. Linux Host Installation

The GNU software development tools were tested Gelaron computer running Linux Fedora Core 5.

The GNU software tools for Linux that are set uphis procedure enable you tg
build the examples for all chapters excE€ptpter 12The examples i€hapter 12
g+ are intended to run on the Arcom board's embeddatkloperating system. The
GNU tools installation for building th€hapter 1Zxample code is covered in

Appendix E

'B'.2.1. GNU Software Tools Installation

The GNU software tools are installed under/thya directory. To install them and make them usable,
follow these steps. (You will need to ensure that flave permission to become superuser (root) in
order to perform the Linux setup successfully).

Open a terminal window and change to byt directory with the command:
# cd /opt

W N

4. The Linux version of the ARM-based GNU tools isdtex in the fildinuxhost.tar.gzCopy this

file to the/opt directory. Next, decompress the file on your hdnide using the command:
5. # tar xvzf linuxhost.tar.gz

7. Finally, set the path to the GNU tools locatioryaur bashshell profile. This ensures the path is
set correctly each time thoashshell is started. Edit tHeashprofile file named
$HOME/.bash_profildwhere$HOME is specific to your environment). Add the followito the

last line in this file:
8. PATH=/opt/gnutools/arm-elf/bin:$PATH ; export PATH

You should notice that the GNU development tootsiastalled undefopt/gnutools The executable
files, such asrm-elf-gcg are contained under thaept/gnutools/birdirectory. The prepended naraen-
elf describes the processor for which the tools aile lawm, and the object file formaglf.
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To test that you installed the tools correctly aetlup the path properly, close the existing teaiin
window. Open a new terminal window (to ensure thatps set properly) and enter the command:

# arm-elf-gcc -v

You should see this response:

Reading specs from /opt/gnutools/arm-elf/lib/gcc/ar m-elf/3.4.4/specs
Configured with: /src/gcc-3.4.4/configure --target= arm-elf --prefix=/opt/gnutool
s/arm-elf --enable-languages=c,c++ --with-gnu-as -- with-gnu-Id --with-newlib --w
ith-gxx-include-dir=/opt/gnutools/arm-elf/arm-elf/i nclude -v

Thread model: single
gcc version 3.4.4

'B'.3. Example Code Installation

The example files for the book can be extractenl amy directory. We recommend installing the
example source code files in thopt/ProgEmbSydirectory. The book's example code is contained in
the filesexamples.zigndexamples.tar.gz

Each chapter's directory contains all the examplece code needed to build the chapter's execstable
Makefiles are included in order to simplify the loyprocess. The details of the build procedure are
covered inChapter 4The procedure for downloading and debugging ¥aemples is covered iGhapter
5.

Appendix 3. Building the GNU Software Tools

This appendix shows how to build the ARM-targetaioh-elf) GNU software toolgy€c binutils, gdb,
newlib) used in this book. The instructions are for bimdows (running Cygwin) and Linux host
operating systems.

u Unless there is some specific reason for buildingwa set of GNU tools, we
— recommend you use the prebuilt GNU binaries praVioie the book's web site

and included on the Arcom board's CD-ROM. The ifetian of the prebuilt tool$

is covered iMppendix BandAppendix E respectively.

Approximately 1.2 GB of disk space is needed fer@&NU tools source code and build output
directories. These instructions are adapted framtbb page "Building a toolchain for use with eCos,
found online ahttp://ecos.sourceware.org

Another popular site for building cross developmeols is found online dtttp://kegel.com/crosstool
This site contains instructions and numerous scfgtbuilding various GNU cross development tool
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chains for various processors and host systemsmight find that the tools on this site suit yoeeds
better.

The following steps should be followed avashshell prompt in Cygwin or a terminal in Linux. We
built the GNU tools under Windows XP (SP2) and kiftedora Core 5. These instructions locate the
GNU tools' source code under tisec directory, the build output unddmp/build and the resulting
GNU tools undefopt/gnutoolsin Windows, all of these subdirectories are cowé under the main
cygwindirectory.

'C'".1. Extracting the Source Files

After downloading thgnutoolssrc.tar.gfile from the book's web site, become superusseat) and
proceed as follows:

1. Create a directory to contain the tool sourcesi¢hgimectory names containing spaces, as these
can confuse the build system). Under Windows, dirisctory is contained under thggwin

directory. Under Linux, this directory is expectedbe located under the roof) directory.
2. # mkdir -p /src

Change to the newly created directory:
# cd/src

SESEN

7. Copy thegnutoolssrc.tar.gfile to thesrc directory.
8. Extract the sources from the compressed file, as/shhere. This should create the following

directories undesrc: binutils-2.15 gcc-3.4.4gdb-6.3 andnewlib-1.13.0
9. # tar xvzf gnutoolssrc.tar.gz

11.Normally, you would apply any patches needed athbint; however, we have already applied
the necessary patches to the source files. Tharpatchutility to aid in applying patches.

'C".2. Building the Toolchain
Now you need to compile the tools for your hardwamd operating system:

1. Before attempting to build the tools, ensure that&NU native compiler tools directory is on

the PATH and precedes the current directory.
2. # PATH=/bin:$PATH ; export PATH
3.

Page 277



Programming Embedded Systems Second Edition

4. Configure the GNU binary utilitieskinutils):

5 # mkdir -p /tmp/build/binutils

6 # cd /tmp/build/binutils

7 # [src/binutils-2.15/configure --target=arm-elf \\

8. --prefix=/opt/gnutools/arm-elf -v 2>&1 | tee config ure.out
9

1

1

0.
1

12.The resulting output is contained in the filenfigure.out If there are any problems configuring
the tools, refer to this file.
13.Build and install the GNWinutils (this step may take an especially long time):

14. # make -w all install 2>&1 | tee make.out
15.

16. The resulting output is contained in the filake.outlf there are any problems building the
tools, refer to this file.
17.Ensure that thbinutils are at the head of the PATH:

18. # PATH=/opt/gnutools/arm-elf/bin:$PATH ; export PATH
19.

20. Configuregcc

21. # mkdir -p /tmp/build/gcc

22. # cd /tmp/build/gcc

23. # Isrc/gec-3.4.4/configure --target=arm-elf \\

24. --prefix=/opt/gnutools/arm-elf --enable-languages=c ,c++ \\
25. --with-gnu-as --with-gnu-Id --with-newlib \\
26. --with-gxx-include-dir=/opt/gnutools/arm-elf/arm-
elf/include \\
27. -v 2>&1 | tee configure.out
28.
29.
30.

31.Build and installgcc (this step may take an especially long time):
32. # make -w all install 2>&1 | tee make.out
33.

34.Configuregdb:
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35. # mkdir -p /tmp/build/gdb
36. # cd /tmp/build/gdb
37. # /src/gdb-6.3/configure --target=arm-elf \\

38. --prefix=/opt/gnutools/arm-elf --disable-nls \\
39. -v 2>&1 | tee configure.out
40.

41.Build and installgdb (this step may take an especially long time):
42. # make -w all install 2>&1 | tee make.out
43.

Following the successful building and installat@frthe GNU tools, the associated build tree (logate
under/tmp/build may be deleted to save space if necessary. Dhehton executable files directory
(/opt/gnutools/arm-elf/binshould be added to the head of your PATH.

Appendix 4. Setting Up the eCos Development Environent

To build an eCos application, you must link thelegaggpion with the eCos library. This appendix
describes how to build a new eCos library for Intkvith application code.

A prebuilt eCos library is already included in th&ok's compressed file, but you may need to knaw th
eCos library build procedure if you move to a newelopment board or require additional functioryalit
in the eCos library.

The eCos examples, covereddhapter 11are built in the same manner as the other exampline
book. The build procedure is covereddhapter 4and the download-and-debug procedur€mapter 5
The eCos examples are built using the GNU toolsigét Appendix B along with the prebuilt eCos
library.

Additional details about building eCos applicati@mas be found in the book Embedded Software
Development with eCos, by Anthony Massa (Prentia# PITR).

'D".1. The eCos Build Environment
Enter the following commands in a Cygwiashshell under Windows or in a terminal window under

Linux. The instructions extract the eCos sourceedodthe/opt/ecodirectory. Other directories can be
used, but the instructions need to be adjustedrdicaby.

u Using Linux, you will need permission to becomeeuger (oot) to perform the
— setup successfully.
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'D".1.1. eCos Source Code Installation

The eCos source code is contained in theefiles.tar.gzIf you use a different version of the eCos
source code, change the following instructions etiogly:

1. Make a directory where the eCos source code isetl, with the following command:
2. # mkdir —p /opt/ecos

3 # cd /opt/ecos

4

5. Copy the eCos source figeos.tar.gzo the/opt/ecoddirectory.

6. Extract the eCos source code files using the foligw
7. # tar xvzf ecos.tar.gz
8.

9. The directory that contains the eCos source codeldmow be available undéypt/ecos/ecos-
redboot-viper-v3i7

10. Set up the environment variables. Edit #OME/.bash_profildile (where$SHOME is specific
to your environment) and add the following lines:

11. PATH=/opt/ecos/ecos-redboot-viper-v3i7/tools:$PATH ;
export PATH

12. ECOS_REPOSITORY=/opt/ecos/ecos-redboot-viper-
v3i7/packages ; export ECOS_REPOSITORY

13.

14.

15.

16. Close the current bash environment and open a newldis allows the changes just made to
the environment to become effective.

'D".1.2. Building the eCos Library

For this build procedure, we use the eCos commiaedebnfiguration tookcosconfigwhich is

included under théopt/ecos/ecos-redboot-viper-v3i7/todisectory. Therefore, these commands are
also executed either at a Cygvimashshell prompt on Windows platforms or on a commiamel on

Linux. There is also a graphical configuration tth@t could be used to accomplish the same outcome.

The resulting eCos files are located under/dptyProgEmbSys/chapterll/eatisectory. If you have
installed the book's source code, there shoul@djrée an eCos library present at this locatioru Yo
need to rename or move the existing eCos libragctbry before proceeding.

1. Make a directory where the eCos files are goingetduilt, using the following commands:
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# mkdir —p /opt/ProgEmbSys/chapterll/ecos
# cd /opt/ProgEmbSys/chapterll/ecos

P

5. Create a new configuration for the Arcom board gshe eCosefault template by entering

the following command:
# ecosconfig new arcom-viper default

No

8. Create the eCos build tree using the command:
9. # ecosconfig tree
10.

11.Finally, build the eCos library by entering the coand:
12.  # make
13.

14.1f you encounter an error, make sure the pathtisgeorrectly, as previously shown. After

successfully building an eCos library, you showd the following message:
15.  build finished

16.You should have various directories unftgst/ProgEmbSys/chapterll/ecascluding the
directoryinstall/lib. Thelib directory contains the eCos operating system aediles that get
linked with eCos applications.

The eCos makefiles contain a variallepS_INSTALL_DIR, which is set to the location of the eCos
install directory—fopt/ProgEmbSys/chapterll/ecos/instalthis case. If the eCos install directory
location changes, this variable must also be chinge

Appendix 5. Setting Up the Embedded Linux Developnré
Environment

In this appendix, we present the procedure fomggttp a Linux host development environment toduil
the example applications fro@hapter 1Zor embedded Linux residing on the Arcom boardeSeh
GNU tools are different from the GNU tools covemned\ppendix B
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Depending on the version of the Arcom board yowermrd, embedded Linux comes preinstalled in flash
memory. When the Arcom board is powered up, RedBretutes a boot script to execute the Linux
kernel residing in flash.

The procedure in this appendix is based on therArooard instructions found i

e | the Arcom Embedded Linux Technical Manual, whicmduded in the

" 4+ development kit CD-ROM. Refer to the section tittaustalling the AEL Host
Environment,"” where AEL stands for Arcom Embeddeétlk.

¥
-.
L
L

The install procedure has been verified on a Caleomputer running Linux
Fedora Core 5. If you encounter problems installireghost build environment,
we suggest you contact Arcom directly. For tecHrsa@port in Europe, send
email toeuro-support@arcom.corfRor technical support in the United States,
send email tas-support@arcom.com.

'E'.1. Linux Build Environment Setup

To ensure that applications you develop run prepanithe Arcom board, you must compile and link
your source code using the libraries present omattgeet board's version of Linux.

- Building applications for Linux using a Windows ¢(a@ygwin) host is beyond thie
a scope of this book. The Internet is replete witlwvHo instructions for configurin
" 4 Cygwin build environments.

= I

The Linux distribution running on the host systemstrbe compatible with the Linux Standard Base
(LSB) version 1.3 (selettp://www.linuxbase.ordor more information). We used Fedora Core 5
(http://fedora.redhat.conon our host development system.

u You will need permission to become superuseot] to perform the installation
— procedure successfully.

The following commands are executed from a termiiatow with the Arcom board development CD-
ROM inserted in the drive.

1. Mount the CD-ROM where the Arcom board developnt@DtROM is located using the

following command:
2. # mount /dev/cdrom /mnt
3.
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4. Run the install script:

5.
6.

# perl /mnt/install

7. At this point, the installation program outputs assage similar to the following:

8.
9

10.
11.
12.
13.
14.
15.

Host Distribution Type: Red Hat Linux
Host Environment: /mnt/host
Packages: /mnt/packages

Temporary Storage: tmp

Checking for Linux Standard Base version 1
Isb_release -- /usr/bin/Isb_release
Isb_release reports version \Q:core-3.0-ia32:core

ia32:graphics-3.0-noarch' -- LSB version >= 2 detec
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

Use of uninitialized value in pattern match (m//) a
core-3.0-ia32
core-3.0-noarch
graphics-3.0-ia32
graphics-3.0-noarch

Several LSB components were found, however none of
version 1 as required.

If possible it is recommended that a host distribut
supports LSB version 1 is used, there may be an add
version 1 support availble for the host distributio
distribution only supports a different LSB version
install using these LSB components however this is

Shall | attempt to install using this version of LS

Checking for the LSB dynamic linker
/lib/ld-Isb.s0.1 -- ok

Checking for required binaries in $PATH...
rpm -- /bin/rpm

Checking for required packages...
Isb version 1.3 -- 3.0-9.2 ok (did not check vers
rpm -- 4.4.2-15.2 ok
rpm-build -- 4.4.2-15.2 ok
wget -- 1.10.2-3.2.1 ok

Checking available disk space
/opt/arcom -- 4095 megabytes -- ok
/tmp -- 4095 megabytes -- ok
Ivar/tmp -- 4095 megabytes -- ok

Installation of the Arcom Embedded Linux Host Envir
This may take some time to complete.

Installing Base Arcom Embedded Linux Host Environme
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56.

57. Checking that a simple LSB application can be execu ted
58. ok

59.

60. Preparing Arcom Embedded Linux Host Environment

61.

62. Installing Arcom Embedded Linux Host Environment

63.

64.

65.0nce the installation is successfully completed,ftllowing message will be output:
66. Installation complete.

67.

68. You should add \Q/opt/arcom/bin" to your PATH. You can do this for the
69. current login session with the following command:

70. export PATH=/opt/arcom/bin:$PATH

71. or you can modify the path for all login sessions f or this user by adding
72. the same statement to \Q$HOME/.bash_profile" or fo r all users by adding it

73. to\Q/etc/profile”.

74.1n order to ensure the path is set correctly eich you open a terminal shell, edit the
$HOME/.bash_profildile (where$SHOME s specific to your environment) by adding the

following line:
75. PATH=/opt/arcom/bin:$PATH ; export PATH
76.

The directoryopt/arcomshould be populated with various files. The exabig files, such agrm-
linux-gcg are contained under thapt/arcom/bindirectory.

To test that you installed the tools correctly aetlup the path properly, close the existing teainin
window. Open a new terminal window (to ensure tathis set properly) and enter the command:

# arm-linux-gcc -v

You should see a response similar to the following:

Reading specs from /opt/arcom/lib/gcc/arm-linux/3.4 .4/specs

Configured with: ../gcc-3.4.4/configure --with-gxx- include-dir=/opt/arcom/arm-
linux/include/c++/3.4.4 --target=arm-linux --host=i 386-pc-linux-gnu --enable-cross-
toolchain --enable-languages=c,c++ --with-gnu-as -- with-gnu-Id --prefix=/opt/arcom
--mandir=/opt/arcom/share/man --with-slibdir=/opt/a rcom/arm-linux/lib --enable-
symvers=gnu --enable-c99 --enable-long-long --progr am-prefix=arm-linux- --program-
suffix=-3.4 --with-headers=/opt/arcom/arm-linux/inc lude --without-newlib --enable-
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threads --enable-shared --enable-_ _cxa_atexit --w ith-arch=armv4t --with-
float=hard

Thread model: posix

gcc version 3.4.4

'E'.2. Embedded Linux Examples

The Linux examples are contained in the book's cesged file under thetrogEmbSys/chapter12
directory. If you followed the installation insttimns inAppendix B the files should be located in the
proper directory. Otherwise, these files can beagktd into any directory, but we recommend insigl|
the example source code files in thpt/ProgEmbSys/chapterirectory.

We do not cover building the Linux kernel that ramsthe Arcom board. For
additional information about building the Linux ket, refer to the Arcom
+* Embedded Linux Technical Manual.

¥
-.
o,
[

= I

'E'.2.1. Building the Linux Examples
To build any of theChapter 14 inux examples, proceed as follows.

1. Open a terminal window and change to the direabbthre examples you would like to build.

For instance, to build thaink example, enter the command:
2. # cd /opt/ProgEmbSys/chapterl2/blink
3.

4. Then build the example code using thakefilewith the following command:
5. # make
6.

7. This should produce two executable files nafokak andblinkdbg

'E'.2.2. Downloading and Running the Linux Examples
To download the examples and run them on the Arlgoand, first boot embedded Linux. Make sure

you connect the Arcom board's COM1 port to yoursP@trial port and are running a console program,
such as minicom.
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Ensure you have the Arcom board's Ethernet boardemted to the main board.
Then connect an Ethernet cable between the Arcardand your computer

i (either directly or via a hub). The instructions émnnecting the Ethernet board
are shown in the Arcom VIPER Technical Manual dr&lYIPER-1/O Technical
Manual.

...
%
=0 T,
.

= I

The following instructions also assume that a Dyiearost Configuration
Protocol (DHCP) server is present on your netwdhks allows the Arcom boarc
to obtain a dynamic Internet Protocol (IP) addréfsgou do not have a DHCP
server on your network, refer to the Arcom Embeddedx Technical Manual
section on statically configuring a network inteda

Power up the Arcom board and allow RedBoot to hanltinux boot script. You should see output
similar to the following once Linux begins its bgobcess:

RedBoot> clock -1 27 -m 2 -n 10

mem:99.532MHz run:199.065MHz turbo:199.065MHz. cccr 0x141 (L=27 M=1 N=1.0)
RedBoot> mount -t jffs2 -f filesystem

RedBoot> load -r -b %{FREEMEMLOQ} %/{kernel}

Using default protocol (file)

Raw file loaded 0x00400000-0x004d4c3f, assumed entr y at 0x00400000
RedBoot> exec -¢ %{cmdline}

Using base address 0x00400000 and length 0x000d4c40

Uncompressing Linux............

After Linux has successfully booted, you shouldtheeArcom board's login prompt:

viper login:

You can then download and run the Linux example®lgwing these steps:

1. Atthe board's login prompt, entept for the login name angtcom for the password. The

Arcom board should then output a command prompt:
2. root@viper root#

3. Next, download the program from the host computehé Arcom board. For instance, to
download theblink example, open a terminal window on the host Ligystem and enter the

following commands:
# cd /opt/ProgEmbSys/chapterl2/blink
# scp blink 192.168.0.4:/tmp/blink

o g s
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7. You may need to replace the IP address (192.1681t4 the IP address appropriate for your
Arcom board.

8. You are then prompted to enter the password fobtiaed as shown here:
9. root@192.168.0.4's password:

10. Enter the passworgtcom . The download will take place and the terminalldiehow output

similar to the following:
11.  blink 100% 3620 3.5KB/s 00:00

12.To execute the downloaded program, enter the fatiguat the Arcom board's prompt:
13. root@viper root# /tmp/blink
14.

15.1f the program downloaded properly, the green LIEEDutd be toggling.

The Linux examples take control over the Arcom Hdaard are intended to run forever. In order to
terminate a specific example, press Ctrl-C at tresole; the Arcom board should abort the prograch an
return to the VIPER-Lite prompt.

'E'.2.3. Debugging Embedded Linux Examples

This section gets you started with remote debuggdditional instructions for debugging embedded
Linux applications are contained in the Arcom EndetiLinux Technical Manual. The embedded
Linux debug procedure takes place over the Ethe@omtection rather than via a serial connection.

After you have downloaded a program, as previosistwn, you can startggdb debug session. The
following example shows how to debug thienk example.

1. Start the debug session by launchinggtleserver process on the Arcom board using the

command:
root@viper root# gdbserver :9000 /tmp/blink "blink"

wn

4. The Arcom board will then wait for you to conneouy host to the target, indicating that it is

waiting by outputting the following message:
Process /tmp/blink created; pid = 706
Listening on port 9000

oo
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7. Begin agdbsession on the host by entering the following taraninal window:
8. # arm-linux-gdb blinkdbg
9.

10.You should then see the familigdb prompt (as we covered @hapter %, similar to the

following:
11. GNUgdb6.1.1
12. Copyright 2004 Free Software Foundation, Inc.

13. GDBis free software, covered by the GNU General Pu blic License, and you are

14. welcome to change it and/or distribute copies of it under certain
conditions.

15. Type "show copying" to see the conditions.

16. There is absolutely no warranty for GDB. Type "sho w warranty" for details.

17. This GDB was configured as "--host=i386-redhat-linu X-gnu --target=arm-
linux"...

18. (gdb)

19.

20.

21.Connect the host to the target by entering thefwoig command at the hosgidb prompt:
22. (gdb) target remote 192.168.0.4:9000
23.

24.You need to change the IP address (192.168.0thettP® address appropriate for your Arcom
board.
25.Upon successful connection, the Arcom board outietdollowing message (the following IP

address may be different for your host):
26. Remote debugging from host 192.168.0.3

You are now ready to start debugging! For additiom@armation about debugging witdb, refer to
Chapter 5
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