## Batch gradient descent vs Stochastic gradient descent

**Stochastic gradient descent (SGD or "on-line")** typically reaches convergence much faster than **batch (or "standard") gradient descent** since it updates weight more frequently.

Unlike the **batch gradient descent** which computes the gradient using the whole dataset, because the **SGD**, also known as **incremental gradient descent**, tries to find minimums or maximums by iteration from a **single** randomly picked training example, the error is typically noisier than in gradient descent.

However, this can also have the advantage that stochastic gradient descent can escape shallow local minima more easily.

In order to obtain accurate results with stochastic gradient descent, the data sample should be in a random order, and this is why we want to shuffle the training set for every epoch.

picture source : https://wikidocs.net/3413

The **cost function** to learn the weights for **Adaline (Adaptive Linear Neuron)** is defined by associating with the $i$-th observation in the training data set as:

where the $\phi$ is an activation function.

To find the weights that minimize our cost function, we can use optimization algorithm
called **gradient descent**:

picture source: Python Machine Learning by Sebastian Raschka

The weight change $\Delta w$ is defined as the negative gradient multiplied by the
**learning rate** $\eta $:

In order to minimize a cost function, in **batch gradient descent**, the gradient is calculated from the whole training set (this is why this approach is also referred to as "batch").

If we have a huge dataset with millions of data points, running the batch gradient descent can be quite costly since we need to reevaluate the whole training dataset each time we take one step towards the global minimum.

So, in **stochastic gradient descent** method, instead of updating the weights based on the sum of the accumulated errors over all samples $\mathbf x^{(i)}$ via the ($ \Delta \mathbf w$) defined above, we can use the following update:

Note that we now update the weights incrementally with a single training sample but not with the whole training set.

As the algorithm sweeps through the training set, it performs the above update for each training example. Several passes can be made over the training set until the algorithm converges. If this is done, the data can be shuffled for each pass to prevent cycles. Typical implementations may use an adaptive learning rate so that the algorithm converges - https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Here is the pseudocode:

- Choose an initial vector of parameters $\mathbf w$ and learning rate $\eta$.
- Repeat until an approximate minimum is obtained:
- Randomly shuffle examples in the training set.
- For $i = 1 , 2 , . . . , n$ do:

$w := w + \Delta \mathbf w $

Here are the output from Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD):

A compromise between computing the true gradient and the gradient at a single example, is to compute the gradient against more than one training example (called a "mini-batch") at each step. This can perform significantly better than true stochastic gradient descent because the code can make use of vectorization libraries rather than computing each step separately. It may also result in smoother convergence, as the gradient computed at each step uses more training examples- https://en.wikipedia.org/wiki/Stochastic_gradient_descent

# Machine Learning with scikit-learn

scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one

### Machine learning algorithms and concepts

Batch gradient descent algorithmSingle Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)

### Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras

# Python tutorial

Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Interview Questions I

Python Interview Questions II

Python Interview Questions III

Python Interview Questions IV

Python Interview Questions V

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...

Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization